TOKYO METROPOLITAN UNIV.

Double Chooz Reactor Neutrino Experiment

Physics seminar @ TMU, 15 Oct. 2015

Takayuki SUMIYOSHI

Neutrino oscillation in 3 flavor scheme and the oscillation parameters

0.7

- 3 mixing angle: $(\theta_{12}, \theta_{23}, \theta_{13}) \sim (34^{\circ}, 45^{\circ}, <12^{\circ})$
- 2 mass splitting: (Δm²₁₂, Δm²₂₃) ~ (8x10⁻⁵ eV², 2.4x10⁻³ eV²)
- CP violation phase: δ ~ unknown

The θ_{13} was the only yet observed mixing angle until 2012. Non-zero θ_{13} is required to measure leptonic CP violation. \rightarrow Many experiments to measure θ_{13} were proposed.

Current experiments to measure θ13

Reactor experiments

- EU+JP+US: Double Chooz (2011-)
- Korea: RENO (2011-)
- China+US: DayaBay (2011-)

Features:

- $E_v \sim MeV$, Short baseline
- Search for $\overline{v_e} \rightarrow \overline{v_e}$ "Disappearance" experiments

Accelerator experiments

- JP+...: T2K (2009-)
- US+...: MINOS (2005-2011), NOvA (2013-)

Features:

- $E_v \sim GeV$, Long baseline
- Search for $v_{\mu} \rightarrow v_{e}$ "Appearance" experiments

IMPORTANCE OF REACTOR NEUTRINO EXPERIMENT

PHYSICAL REVIEW D 68, 033017 (2003)

Reactor measurement of θ_{13} and its complementarity to long-baseline experiments

H. Minakata,* H. Sugiyama,[†] and O. Yasuda[‡]

Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

K. Inoue[§] and F. Suekane^{II}

Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan (Received 8 November 2002; revised manuscript received 18 April 2003; published 28 August 2003)

The possibility of measuring $\sin^2 2\theta_{13}$ using reactor neutrinos is examined in detail. It is shown that the sensitivity $\sin^2 2\theta_{13} > 0.02$ can be reached with 40 ton yr data by placing identical CHOOZ-like detectors at near and far distances from a giant nuclear power plant whose total thermal energy is 24.3 GW_{th}. It is emphasized that this measurement is free from the parameter degeneracies that occur in accelerator appearance experiments, and therefore the reactor measurement is complementary to accelerator experiments. It is also shown that the reactor measurement may be able to resolve the degeneracy in θ_{23} if $\sin^2 2\theta_{13}$ and $\cos^2 2\theta_{23}$ are relatively large.

DOI: 10.1103/PhysRevD.68.033017

PACS number(s): 14.60.Pq, 25.30.Pt, 28.41.-i

I. INTRODUCTION

Despite the accumulating knowledge of neutrino masses and lepton flavor mixing from atmospheric [1], solar [2,3], and accelerator [4] neutrino experiments, the (1-3) sector of the Maki-Nakagawa-Sakata (MNS) matrix [5] is still unclear. At the moment, we know only that $|U_{e3}| = \sin \theta_{13} \equiv s_{13}$ is small, $s_{13}^2 \leq 0.03$, from the bound imposed by the CHOOZ reactor experiment [6]. In this paper we assume that the light neutrino sector consists of three active neutrinos only. One of experiments MINOS [12], OPERA [13], and JHF phase I [14]. It may be followed either by conventional superbeam [15] experiments (the JHF phase II [14] and possibly others [16,17]) or by experiments at neutrino factories [18,19]. It is pointed out, however, that the measurement of θ_{13} in LBL experiments with only a neutrino channel (as planned in JHF phase I) would suffer from large intrinsic uncertainties, on top of the experimental errors, due to the dependence on an unknown *CP* phase and the sign of Δm_{31}^2 [20]. Furthermore, it is noticed that an ambiguity remains in the determination

Two complementary approaches: Reactor & Accelerator

Reactor experiments (ve disappearance): Double Chooz, Daya-Bay, RENO

$$P\left[\overline{\nu_{e}} \rightarrow \overline{\nu_{e}}\right] \approx 1 - \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right) + O(10^{-3})$$

Sensitive to only θ_{13} \rightarrow Pure measurement of θ_{13}

Accelerator experiments (ve appearance using vµ beam): T2K, NOvA

$$\begin{split} P\left[\mathbf{v}_{\mu}(\overline{\mathbf{v}_{\mu}}) \rightarrow \mathbf{v}_{e}(\overline{\mathbf{v}_{e}})\right] &= \sin^{2}2\theta_{13}s_{21}^{2}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) - \frac{1}{2}s_{12}^{2}\sin^{2}2\theta_{13}s_{22}^{2}\left(\frac{\Delta m_{21}^{2}L}{2E}\right)\sin\left(\frac{\Delta m_{31}^{2}L}{2E}\right) \\ &+ 2J_{r}\cos\delta\left(\frac{\Delta m_{21}^{2}L}{2E}\right)\sin\left(\frac{\Delta m_{31}^{2}L}{2E}\right) \mp 4J_{r}\sin\delta\left(\frac{\Delta m_{21}^{2}L}{2E}\right)\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \\ &\pm \cos2\theta_{13}\sin^{2}2\theta_{13}s_{22}^{2}\left(\frac{4Ea(x)}{\Delta m_{31}^{2}}\right)\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \\ &\pm \cos2\theta_{13}\sin^{2}2\theta_{13}s_{22}^{2}\left(\frac{4Ea(x)}{\Delta m_{31}^{2}}\right)\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \\ J_{r} = c_{12}s_{12}c_{13}^{2}s_{13}c_{23}s_{23} \\ &\mp \frac{a(x)L}{2}\sin^{2}2\theta_{13}\cos2\theta_{13}s_{22}^{2}\sin\left(\frac{\Delta m_{31}^{2}L}{2E}\right) + c_{23}^{2}\sin^{2}2\theta_{12}\left(\frac{\Delta m_{21}^{2}L}{4E}\right)^{2} \end{split}$$

Sensitive to θ_{13} , δ_{CP} , mass hierarchy, θ_{23} \rightarrow Capability to measure δ_{CP} using v_{μ} and anti- v_{μ} beam

θ₁₃ until May 2011

ve disappearance search - CHOOZ

sin²2θ₁₃ < 0.15 @ 90% C.L.

ve appearance search - MINOS

 $sin^2 2\theta_{13} < 0.12 @ 90\%$ C.L. (NH) $sin^2 2\theta_{13} < 0.20 @ 90\%$ C.L. (IH)

- K2K sin²2θ₁₃ < 0.26 @ 90% C.L.

→ No sign of non-zero $θ_{13}$. Upper limit only.

Double Chooz experiment

- Direct measurement of θ_{13} with a \mathbf{v}_e disappearance at ~ 1 km baseline. $P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$
- Reactor is a free and rich \overline{v}_e source. Flux expectation within 2%error.
- The reactor neutrinos are detected by a well-designed detector.
- Background is strongly suppressed by delayed coincidence technique.
- Systematic uncertainties are further reduced by two identical detectors.

- Direct measurement of θ_{13} with a $\bar{\mathbf{v}}_e$ disappearance at ~ 1 km baseline. $P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$
- Reactor is a free and rich \overline{v}_e source. Flux expectation within 2%error.
- The reactor neutrinos are detected by a well-designed detector.
- Background is strongly suppressed by delayed coincidence technique.
- Systematic uncertainties are further reduced by two identical detectors.

- Direct measurement of θ_{13} with a $\bar{\mathbf{v}}_e$ disappearance at ~ 1 km baseline. $P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$
- Reactor is a free and rich \overline{v}_e source. Flux expectation within 2%error.
- The reactor neutrinos are detected by a well-designed detector.
- Background is strongly suppressed by delayed coincidence technique.
- Systematic uncertainties are further reduced by two identical detectors.

- Direct measurement of θ_{13} with a $\bar{\mathbf{v}}_e$ disappearance at ~ 1 km baseline. $P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + O(10^{-3})$
- Reactor is a free and rich \overline{v}_e source. Flux expectation within 2%error.
- The reactor neutrinos are detected by a well-designed detector.
- Background is strongly suppressed by delayed coincidence technique.
- Systematic uncertainties are further reduced by two identical detectors.

Detection principle of reactor neutrinos

Inverse beta decay (IBD) reaction & Delayed coincidence technique:

Neutrino selection using Gd-capture:

- (1) Prompt signal from e⁺ ionization and annihilation (1~8 MeV).
- (2) Delayed signal from neutron capture on Gadolinium (~8 MeV).
 (3) Time coincidence (τ~30 μsec).

Alternative channel using H-capture
w/ higher stat. but worse systematics:
(2') Capture on Hydrogen (~2.2 MeV).
(3') Time coincidence (T~200 µsec).

In this IBD process, prompt energy is related to neutrino energy:

 $E_{vis} = E(kin)_{e^+} + 2m_e \simeq E_{\bar{\nu}_e} - (M_n - M_p) + m_e \simeq E_{\bar{\nu}_e} - 0.782 \,\mathrm{MeV}$

 \rightarrow Spectral shape of the prompt signal gives us further information.

Double Chooz experiment

Reactors

EDF Electricité de France

Two reactor cores 4.27 GW_{th} for each core

Near detector

L = \sim 400 m \sim 120 m.w.e. 10 m³ target

Operating since 2015

L = $\sim 1050 \text{ m}$ ~300 m.w.e. 10 m³ target

Far detector

Operating since Apr. 2011

Far only operation : Measure the mixing angle θ_{13} by comparing observed neutrino candidates at the Far detector with prediction.

Double Chooz collaboration...

Double Chooz detector

, Inner Detector (ID) - three cylindrical layers

v-target region

- Gd-loaded (1 g/l) liquid scintillator (10.3 m³)
- Target of neutrino interaction

γ-catcher region

- 22.3 m³ liquid scintillator
- Measure γ 's escaped from v-target region

Buffer region

- 110 m³ mineral oil & 390 low-BG 10" PMTs
- Reduce environmental γ & neutron BG

Detectors for BG veto

Inner veto (IV)

- Liquid scintillator & 78 8" PMTs in steel tank
- Identify cosmic μ & reduce environmental γ

Outer veto (OV)

- Plastic scint. strip + WLS fiber + MAPMT
- Identify cosmic µ

Detector in construction Buffer

 γ -catcher

 ν -target

Source deployment system

Two deployment system:

- Z-axis system
- Guide tube system.

→ Source deployment is useful to estimate systematics.

Deployable sources:

- ¹³⁷Cs (gamma)
- 68Ge (positron)
- ⁶⁰Co (gamma)
- ²⁵²Cf (neutron)
- Laser ball (light)

In addition to those artificial sources, we used natural sources like H-n, C-n, Gd-n and BiPo peaks for our calibration.

Neutrino selection

Muon veto

- No large energy deposit in ID/IV [Revised]
- $\Delta T_{\mu} > 1$ msec

Prompt signal

- 0.5 < Evis < 20 MeV [Tuned]
- PMT light noise cuts [Revised]

Delayed signal

- 4< Evis < 10 MeV [Tuned]
- PMT light noise cuts [Revised]

Delayed coincidence

- 0.5 < ΔT_{p-d} < 150 μsec [Tuned]

Distance cut

- ΔR_{p-d} < 100 cm [New]

Multiplicity cut

- No extra events around signal [Tuned]

Further BG reduction

- OV veto
- IV veto [New]
- FV veto [New]
- Li+He veto [New]

IBD process in the detector

IBD candidates and rate modulation

Rate stability of IBD candidates

- Selected 17358 IBD candidates for 467.9 days of Livetime.
- Rate modulation is in good agreement with its prediction.

Background (I): Accidental background

Accidental background:

e.g.) Environmental γ + Fast neutron

Estimation method:

This BG is estimated from coincident events in off-time window.

Estimated BG rate = 0.070 ± 0.003 event/day

Background (II): Correlated background

Correlated background:

Fast n: recoil proton + captured n on Gd Stop μ : μ + its decay (mostly tagged by OV)

Estimation method:

This BG is estimated from high E_{prompt} region w/ IV and OV coincident events.

Estimated BG rate = 0.60 ± 0.05 event/day

Background (III): Cosmogenic background

Cosmogenic isotopes background:

Spallation products from muon: ⁹Li $\rightarrow e^- + n + {}^8\text{Be} \ (\tau \sim 200 \,\text{msec})$

Estimation method:

This BG is estimated with spatial and time correlation between candidates and μ 's.

Estimated BG rate = $0.97^+_{-0.16}$ event/day

Oscillation analysis

Updated θ₁₃ results

Chi square test with systematics:

- Fit data w.r.t. its prediction with systematic uncertainties for which covariance matrices and pull terms were used.

Improvements compared to DC-II:

- Fit range from 0.5-20 MeV.
- Finer binning (mostly 0.25 MeV bin).
- Measured ²³⁸U spectrum in prediction.
- New Δm² from MINOS 2013 results (T2K confirmed).
- Energy scale accounting for non-linearity.
- Constraint of reactor-off measurement.

 $\sin^2 2\theta_{13} = 0.090^{+0.032}_{-0.029} \text{ (stat + sys)} \text{ with } \chi^2/\text{d.o.f.} = 52.2/40$

Interesting distortion was found...

- Similar structure can be seen in CHOOZ experiment (but less significant).

- DC firstly reported it at the Seminar in France before Neutrino 2014.

RENO also reported an excess (but DB?)

RENO's presentation at Neutrino 2014:

https://indico.fnal.gov/getFile.py/access?contribId=255&sessionId=15&res Id=0&materialId=slides&confId=8022

- RENO reported clear excess and correlation with thermal power.
- How about DB spectrum? They did not mention so far.

The origin is still in mystery. To be investigated...

3 years later...

← Indication of non-zero θ₁₃
 Upper limit only

 \leftarrow Observation of non-zero θ_{13}

Toward precision measurement

Double Chooz conducts a precision measurement, which could contribute to possible success in future experiment measuring δ_{CP} and mass hierarchy.

- \rightarrow Independent observation with other reactor experiments.
- \rightarrow Complementary with accelerator experiments.

Near detector construction & Future prospects

ND construction - Excavation & Lab delivery

ND construction - Inner veto and Buffer vessel

ND construction - Buffer PMT installation

ND construction - Acrylic vessels and lid closure

Liquid filling in the last summer. Data taking starts in 2015.

Prospected 1 σ error with ND

After both detectors operation starts, significant improvement is expected: $sin^22\theta_{13}$ sensitivity of ~0.15 within 3 years, eventually up to ~0.01 with a possible systematics suppression.

Summary

Neutrino mixing angle θ_{13} was found in recent years.

→ Precision measurement of the θ_{13} is one of key factors for future experiments to know neutrino nature like δ_{CP} & mass hierarchy.

Double Chooz proceeds a precision measurement.

 \rightarrow Independent observation with other reactor experiments.

 \rightarrow Complementary with accelerator experiments.

New analysis results from Double Chooz.

- $\rightarrow sin^2 2\theta_{13} = 0.090 \pm 0.03$ (stat+sys)
- \rightarrow Interesting energy distortion was found around ~5 MeV.

Near+Far detector operation started in this year. \rightarrow Significant improvement up to ~0.01 of sin²2 θ_{13} sensitivity.