

平成29年度 3月2日(木) 9:00~16:30 3月3日(金) 9:10~16:45

首都大学東京

都市教養学部 都市教養学科 理工学系 物理学コース

平成 29 年度卒業研究発表会

首都大学東京

都市教養学部都市教養学科理工学系物理学コース

3月2日(木) 9:00~16:30

3月3日(金) 9:10~16:45

場所 11号館 204号室

3月2日(木)

午前9:00~ 宇宙理論(3)、素粒子理論(3)、高エネルギー実験(4)、 高エネルギー理論(2)

午後13:00~ 電子物性(4)、ソフトマター物性(3)、原子物理実験(3)、 強相関電子論(3)

3月3日(金)

午前9:10~ 量子凝縮系理論(4)、宇宙物理実験(7)

午後13:15~ 表界面光物性(3)、原子核ハドロン物理(2)、非線形物理(3)、 ナノ物性(5)

Pre-main-sequence star の安定性

宇宙理論研究室

井上裕貴 **13163034** 指導教員:政井 邦昭 佐々木 伸

恒星(以下星と呼ぶ)の性質で最も測りやすいものは光度(L)と表面有効温度(T_e)であり、これ をプロットしたものがHR図と呼ばれる。そのHR図上で大部分の星が分布する帯状の分布を主系列 (main sequence)と呼び、水素燃焼の核融合反応をエネルギー源として輝く。この主系列に達する前の 星を前主系列星(Pre-main-sequence star)と呼び、重力収縮により解放される重力ポテンシャルエネ ルギーをエネルギー源として輝く。この前主系列星が重力収縮し、中心温度が水素燃焼可能な温度 (~10⁷*K*)に達すると主系列星となる。星はその生涯のほとんどを主系列上で過ごし、中心の水素が枯渇 すると主系列から外れて壮年期を迎えるというのが一般的な星の進化過程である。

上で挙げた各エネルギーは主に星の中心付近で生成され、星表面へと輸送されていく。その際の星内 部におけるエネルギー輸送は対流と放射の2つが存在し、効率の良い方が選ばれる。(星内部の光学的 な不透明度が高い場合、放射より対流の方がエネルギー輸送効率は良い。)前主系列星の進化過程の前 半は Hayashi トラックと呼ばれ、対流によるエネルギー輸送が主となっている。それに対し前主系列星 の進化過程の後半は Henyey トラックと呼ばれ、放射によるエネルギー輸送が主となっている。この変 化は、星内部の温度上昇につれ光学的な不透明度が低下することに依るものである。Hayashi トラック よりも低温側の領域は Hayashi の禁止領域と呼ばれ、この領域の星は力学平衡状態にあり得ないことが 知られている。

本研究ではこの星の表面温度の下限値を調べるために、前主系列星における対流平衡にある星のモデ ルを考え、星表面での初期条件を与えて中心に向かって微分方程式を解くことで、各初期条件に対する 星の解を求めた。そしてそれらの解の安定性と表面有効温度との関連性を調べることで、対流平衡にあ る星には表面有効温度の下限値が存在し、その下限値よりも低い表面有効温度を持つ星の解は不安定で あることを示した。 Hayashi トラックよりも

出典 ワードトンプソン&ウィットワース:星形成論

図 2 HR 図上での前主系列星の進化過程(概略図) 出典 ワードトンプソン&ウィットワース:星形成論

中性子星の状態方程式と質量

宇宙理論研究室

橋詰 享亮 13163057 指導教員 政井 邦昭 佐々木 伸

中性子星とは、主に縮退した中性子で構成された星である。半径は約10km、質量は $1\sim 2M_{\odot}$ となっており、とても狭い領域に大きな質量が存在している。内部は右図のようになっていると考えられている。outer crust では電子の縮退圧で支えられており、白色矮星と同じ状態になっている。outer crust と inner crust の境界では原子核から自由中性子が漏れ出す neutron drip と呼ばれる現象が起こっている。inner crust では電子だけではなく自由中性子の縮退

図. 中性子星の内部構造

圧も生じている。core では原子核密度($\rho = 2.8 \times 10^{14} g/cm^3$)を超えた密度になっており、 原子核の構造がなくなっている。電子捕獲により中心に近いほど中性子の割合が多くなっ ており、core ではほとんどが中性子で構成されている。

core を支えているのは主に中性子の縮退圧だが、それのみで中性子星の最大質量を計算 すると約0.7 M_{\odot} となる。このことから、中性子星の内部状態を考えるには縮退圧だけでは なく、核力などの影響も考慮に入れる必要がある。また、core のような高密度状態ではフ ェルミ運動が十分に大きいことから、核子から hyperon や quark matter へ相転移する可 能性も考えられている。中性子星の core に関してはまだ不明確な点が数多く存在するた め、内部状態を考えるには仮定と原子核実験による具体的な値が必要となる。

様々な仮定と実験による値から中性子星の内部の状態方程式(EOS)は調べられてきてお り、今までにいくつもの予想された EOS が作られてきている。これらの EOS を、一般相 対性理論における重力と圧力勾配のつり合いを表す TOV 方程式に代入して解くことによ り、中心密度と半径、質量の関係を調べることができる。ただし、TOV 方程式は時間不変 で球対称な計量のもとで Einstein 方程式を解いて導かれたものであるため、中性子星の自 転や磁場は考慮されていない。この計算を行うと、それぞれの EOS において中性子星の 最大質量が存在することが分かる。そのため、実際に観測されている中性子星の質量から EOS の制限を行うことが可能である。

本研究では、core の状態が異なる 3 つの EOS に関して実際に TOV 方程式を用いて計算 を行った。TOV 方程式は圧力Pと密度pが polytrope の関係 ($P \propto \rho^{\Gamma}$, $\Gamma = const.$) である 場合にのみ数値的に解くことができる。しかし、実際の EOS ではFが一定ではないため、 直接代入して計算を行うことは難しい。そこで、EOS を七つに区分化し、それぞれを polytrope に近似した EOS (piece-wise polytrope EOS) を使って計算を行った。そして、 各 EOS のグラフと最大質量の関係性を調べた。

自己重力系の Gravothermal Catastrophe

宇宙理論研究室

笠原 悠 13163010担当教員 政井 邦昭 佐々木 伸

星や銀河、星団などのように、系の構成要素自身の作り出す(自己)重力によって形を保っている系を自 己重力系という。この自己重力を考慮することにより、宇宙物理では特徴的な現象が現れる。以下では 熱力学系と比較して、自己重力系に現れる不安定性の仕組みとその発生条件について簡単に説明する。

球状の断熱壁で囲まれた等温状態の理想気体を考える。通常の熱力学で考えれば系は熱平衡であり、 エントロピー極大($\delta S = 0$ 、 $\delta^2 S < 0$)の状態になっている。いま系内にある内殻から系内の別の領域に ある外殻に熱を移動させれば、内殻(外殻)は熱エネルギーを失う(得る)ことで温度が減少(上昇) する(つまり比熱が正である)。この後系は熱力学第二法則に従って温度勾配の下がる方向へ熱を流出し て再び等温、つまりエントロピーが極大の状態へ戻ろうとする。

一方自己重力系では内殻から熱を抜くと、今まで内殻を支えてい た圧力が減少するので、重力収縮を起こし、重力エネルギーの変換 と収縮過程により温度が上昇する。これは熱(エネルギー)を抜い たにもかかわらず内殻の温度が上昇し、見かけ上の比熱が負である ことを示している。外殻も熱を得ることで温度は上昇するが、膨張 によりいくらか温度は下がる。これによる内殻での温度変化の収支 が外殻での収支を上回れば、内殻の温度が高くなる温度勾配が生じ、 再び熱は外殻へと流れだす。このような熱の流出と重力収縮による

温度上昇のサイクルを繰り返すことにより、系は等温状態とは別の状態(構造)である「コア・ハロー 構造」を形成することになる。系内部の変化が止まらずに状態が変動していくということは、系は安定 なエントロピー極大の状態ではないということ($\delta^2 S > 0$)を示しており、これは重力の効果が有効であ るために生じている。このような重力の影響で現れる熱力学的不安定性はAntonov(1962)により発見さ れ、後に Gravothermal Catastrophe (以下 G.C.)と名付けられた。G.C.は、恒星が核融合反応を終え て赤色巨星になる現象などに対応していると考えられている。G.C.が生じる条件としては、等温状態の 場合、系の中心と外縁の密度比が臨界値(709)を上回っている(つまり中心が外縁に比べ高密度状態にな る)状態で現れるということが示されている。

Antonov(1962)は球形断熱壁に囲まれた星団を、等温状態のまま議論した。本研究では等温状態の系に 摂動を加えた場合に、G.C.がどのように現れるかを確認する。具体的には、球状断熱壁に囲まれた等温 状態の自己重力ガス系において、重力と内部圧力の釣り合った平衡解に対して内部での熱の移動という 摂動を与えた際の、物理量の変化とδ²Sの符号の変化を確認する。

参考文献: Hachisu and D. Sugimoto, Prog. Theor. Phys. 60 (1978), 123.

純粋 Yang-Mills 理論のくりこみと漸近的自由性

素粒子理論研究室

氏名: 黒田 航平 13163048 指導教員名: 安田 修

Yang-Mills 理論とは, 非可換なゲージ理論のことであり, 例えば SU(2) や SU(3) のゲージ対称性を持った理論である. しかし今回は主に QCD(SU(3)) に限ったくりこみについての説明をすることにする. また自発的な対称性の破れのない純粋な理論についてのみ考える.

ファインマンダイアグラムの内部のループを計算すると発散してしまう. さらにこれは摂動級数展開して計算して おり,高次のオーダーになるほどループの多いダイアグラムが現れるので,発散の度合いが増していく可能性すらある. これは質量,結合定数などの物理量を発散させることになるので,これを処理する方法として'くりこみ'というものが 知られている.

QCD においては 1 ループのファインマンダイアグラムがいくつかあるが, その中でも発散するダイアグラムは 6 つ ある.

これらはそれぞれフェルミオン (quark) の自己エネルギーグラフ, ボソン (gluon) の真空偏極グラフ (3 つ), 2 つの フェルミオンと1 つのボソン (quark-quark-gluon) のグラフ (2 つ) に対応する. primitive な発散が現れるダイアグラム として, 3 つのボソンの頂点や 2 つのボソンの散乱のダイアグラムや, ボソン (gluon) の自己エネルギーグラフなどが あるが, これらは見かけ上の発散次数が正であるにもかかわらずそれぞれ消えることが示される.

発散する合計6つのダイアグラムをファインマンルールを用いて計算する.例えば1つ目のグラフではプロパゲー タ,もしくは1粒子既約関数の1ループまでの補正は

$$\frac{k}{p} - i\Sigma^{ab}(p) = -g^2 \int \frac{d^4k}{(2\pi)^4} \gamma_{\mu} \frac{1}{p - k - m} \gamma_{\nu} \frac{g^{\mu\nu}}{k^2} (T^c)_{ad} (T^c)_{db}$$

などのように計算される.次に正則化を施し発散量を分離する.正則化の方法として,ループの積分を d 次元において 実行した後で d → 4 の極限をとるという次元正則化と呼ばれるものを採用する.その後相殺項 (counter-term) による くりこみを実行する.これは元々の有限の物理量を用いたラグランジアンに相殺項と呼ばれる無限大の項を相互作用 として追加するという方法である.これにより物理量が有限にくりこまれることを確認する.以上のくりこみ操作を考 えている全てのダイアグラムについて実行できることを示す.またこれらが (結合定数ではなく) ループの数 (ħ の次 数) ごとの展開の全ての次数において実行できること、すなわちくりこみ可能性についても (時間があれば) 証明する.

最後にくりこまれていない結合定数がくりこみのパラメータに依らないことから, ' 走る' 結合定数の振る舞いを考察し, 最終的にはクォークのフレーバーの数が 16 以下である場合に高エネルギーにおいて Yang-Mills 理論における' 走る' 結合定数が0 に近づくという漸近的自由として知られる性質を持つことを見る.

参考文献

[1] Lewis H.Ryder, Quantum Field Theory Second edition, Cambridge University Press (1996)

カイラルアノマリー

素粒子論研究室

石田 和也 13163072

安田 修 (指導教員)

場の量子論において量子補正を取り込んだ計算を行うと、しばしば古典論で成立して いた対称性が破れてしまうことがある。このことを一般にアノマリーと言い、様々な場面 で出現することが分かっている。その中でも、特に初めてアノマリーとして発見されたカ イラルアノマリーについて review する。

カイラルアノマリーは $\pi^{\circ} \rightarrow 2\gamma$ の崩壊過程の解析において1949年にSteinberger、1 951年にSchwingerによって最初に現象論として現れた。後に1966年、Sutherland のカレント代数と PCAC を用いた π° 崩壊の計算においてこの遷移振幅は0となり実験と矛 盾することが判明し、これはSutherland paradox と知られることになる。そして、この paradox を解決したのが Adler-Bell-Jackiw であり、彼らにより初めて明確にカイラルア ノマリーが認識された。カイラルアノマリーは主に、カイラルな理論(γ_{\circ} が相互作用に現 れる理論)において以下のフェルミオンのトライアングルグラフから初めて生じる。この ダイアグラムにおいてベクトル、軸性ワード恒等式をすべて成立させることができず、特 にゲージ場とカイラルカレントが結合する理論ではゲージ不変性を壊してしまう。これは 理論のくりこみ可能性をも脅かすもので、非常に良くない。今回の発表では、まず古典論 でのベクトル、軸性ベクトルカレント保存則を導出をしフェルミオン質量m=0の場合、 カイラルカレントは保存することを見る。次にトライアングルグラフにおいて各頂点での 保存則(ベクトル、軸性ワード恒等式)をファインマンダイアグラムを用いて直接計算す る。

ワインバーグサラム理論はまさにカイラルな理論だが、実はレプトンとクォークの アノマリーが相殺されて問題ないことが知られている。逆にこの相殺条件のために、クォ ーク、レプトンの対応が標準模型の世代構成を要求するので、アノマリーは理論の構築に 欠かせない重要な要素であると考えられている。

- 参考文献[1] Lewis H.Ryder,QUANTUM FIELD THEORY Second edition ,Cambridge University Press(1996)
 - [2] 九後汰一郎,ゲージ場の量子論Ⅱ,培風館

自発的に対称性の破れた Yang-Mills 理論の繰り込み可能性

素粒子論研究室

保科 宏樹 13163021

安田 修 (指導教員)

高エネルギー実験の結果と非常に良く合致する標準模型は、Yang-Mills 理論(非可換ゲージ理論)に Higgs 機構を取り入れた模型である。

場の量子論では物理量は摂動展開によって出てくる散乱過程の振幅として得ることがで きるが、無限大量が出てくるため、「繰り込み」という操作によって物理量が決定できるモ デルにする。実際、pure な (Higgs 機構を入れていない) Yang-Mills 理論は繰り込み可能 である。しかし pure な Yang-Mills 理論ではゲージ不変性のためにフェルミオンやゲージ ボソンの質量が 0 になってしまう。つまり電子やクォーク、W、Z ボソンの質量が 0 とな り、今の宇宙での事実と一致しない。そこで理論に Higgs 機構を取り入れることで、まず ゲージボソンに質量を持たせ、フェルミオンの質量は、Higgs 場との相互作用を仮定するこ とで生じさせる。そして実験事実と整合性のある理論であるためには、この Higgs 機構を 取り入れた Yang-Mills 理論が繰り込み可能であることが必要である。

今回の発表では、まず Higgs 機構について説明する。U(1)ゲージ場と結合し、自己相互 作用する複素スカラー場において、Higgs 機構によりゲージボソンが質量を獲得すること を概観する。

理論の繰り込み可能性には、粒子の伝播関数の発散次数(運動量の次元)の勘定が欠かせない。Pure な理論では問題なかった massless ゲージボソンの伝播関数は、massive になると、理論の発散機構に悪影響を与えかねないことがわかる。そこで理論のゲージ自由度を利用し、't Hooft ゲージと呼ばれるゲージを選ぶことで、この危機を回避する。

次に、Higgs 機構により自発的に対称性の破れた Yang-Mills 理論を古典場と有効作用に よって書き換えることで、pure な理論にあった繰り込み可能な機構に影響を与えないこと を概観する。古典場とは、量子効果を入れていない 0 次近似での場である。有効作用とは、 古典場と source によって書かれていて、書き換えた理論の量子効果を担っており、古典的 極限では古典理論の作用に一致する。元にあった繰り込み可能性に影響を与えないため、自 発的に対称性の破れた Yang-Mills 理論は、繰り込み可能であるということとなる。

フェルミオンやウィークボソンに質量が入った理論がしっかりと繰り込み可能である、 つまり物理量として無限大という意味のない値ではなく、意味のある有限な値を得られる 理論であると示されたことは、非常に意義のあることであり、素粒子物理学において重要な ステップであった。

BelleII 実験用粒子識別装置 ARICH の

宇宙線事象の解析

高エネルギー実験研究室

為近 彩智 13163015

角野 秀一 (指導教員)

Belle II 実験は、高エネルギー加速器研究機構(KEK)に建設されている superKEKB 加速器を 用いて 7GeV に加速した電子と 4GeV に加速した陽電子の対消滅による B 中間子対の生成、崩壊 過程を BelleII 検出器で大量に観測する実験である。その崩壊過程に含まれるごく稀な事象を 精密に調べ、標準模型を超える新しい物理を探索することを目的としている。

BelleII 検出器は複数の検出器から構成される。そのうちの一つである Aerogel Ring Imaging CHerenkov 検出器(ARICH)は、荷電 K/π中間子の粒子識別を担う。ARICH はシリカエア ロゲル輻射体と光検出器 Hybrid Avalanche Photo-Detector (HAPD) からなり、荷電粒子がシリ カエアロゲルを通過する際に放射するチェレンコフ光をリングイメージ(図 1)として HAPD で観 測する。このチェレンコフ光のリングイメージの半径の違いから粒子質量を求めることで、粒 子識別を行う。

本研究では、ARICHの性能評価のために図2のセットアップで行われた宇宙線テストの解析 を行った。本セットアップでは飛跡検出器が存在しないため、ARICHのリングイメージ情報を もとに宇宙線の飛跡を求める手法を開発し、平成28年12月~1月に収集した宇宙線データの 解析を行った。その結果、宇宙線のチェレンコフ光の発光点がエアロゲルの範囲内にあること を確認し、エアロゲルを通過した宇宙線が観測できていることを確認した。またチェレンコフ 光の放射角分布を求め、その理論値との比較を行った。

図2:宇宙線テストのセットアップ

ARICH プロトタイプ検出器の

ビームテストデータの解析

高エネルギー実験研究室

柿本詩織 13163030

角野秀一(指導教員)

Belle II 実験は高エネルギー加速器研究機構に設置されている電子・陽電子衝突型加速器 Super-KEKB により、大量の B 中間子対を生成しその崩壊過程を観測することで標準模型を超え る新しい物理の探索を行うことを目的とした実験である。

Belle II 検出器は複数の検出器から成る複合型検出器である。そのエンドキャップ部における 荷電 π/K 中間子の粒子識別を行う Aerogel Ring Imaging CHerenkov 検出器 (ARICH)の開発が首 都大を含むグループにより進められている。ARICH はシリカエアロゲル輻射体と光検出器 Hybrid Avalanche Photo Detector (HAPD)の2層構造になっている。荷電粒子がエアロゲルを通過する 際に発生するチェレンコフ光を HAPD でリングイメージとして観測し、その半径の違いから粒子 の識別を行う。

本研究では、図1のセットアップで2013年に行われたARICHプロトタイプに対し斜め方向から荷電粒子が入射する際のπ/K識別能力を調べるためにARICHに対して30度の入射角でビームを入射したデータの解析を行った。ビームテストデータで観測されたリング(図2)とπ中間子とK中間子を仮定したときのチェレンコフ角から予測されるリングを用いて粒子識別能力の評価を行った。

図1:ビームテストのセットアップ

図 2: ビームテストで観測された チェレンコフリングと計算により 予測されるリング

改良型 UNI 検出器を用いたポジトロニウム 5 光子崩壊事象の観測

高エネルギー実験研究室

吉川 広陽 13163051

汲田 哲郎 (指導教員)

ポジトロニウムは電子と陽電子の電磁相互作用による束縛状態である。ポジトロニウムは通常 2,3 光子に崩壊し稀に4光子以上に崩壊する。ポジトロニウムの5光子崩壊過程は高次QED現 象であり、直接観測は世界でもまだ実現されていないユニークな実験である。

我々は UNI 検出器を用いて 5 光子崩壊事象の検出実験を行っており、高次 QED の検証を目的 としている。UNI 検出器は 32 面構造体の 30 面にそれぞれ NaI シンチレーターを配置し、構造体 中心で生成したポジトロニウムの光子崩壊を検出する。

しかし、これまでの装置では3光子崩壊事象などからのバックグラウンドが非常に大きく、5光 子崩壊事象の検出は難しいことが分かった。我々はシミュレーションに基づき、バックグラウン ド低減のため、陽電子線源部、ポジトロニウム生成部、コンプトン散乱遮蔽用鉛シールドの改良 を行った。改良された装置を用いたデータ収集は、2017年1月より開始された。

本発表では、今までに行ってきた実験装置の改良と、ポジトロニウム5光子崩壊事象解析の現 状について報告する。

図 1 UNI 検出器外観

宇宙線ミューオンによる岩手山透視に向けた

シミュレーション研究

高エネルギー実験研究室

小西 達也 13163008

角野 秀一 (指導教員)

一次宇宙線が大気圏に届く際、一次宇宙線と大気の原子核反応によりπ中間子と K 中間子が でき、すぐに二次宇宙線であるミューオンなどに崩壊する。ミューオンは電荷を持ちかつ強い相 互作用をしない素粒子であり、電子と比較して非常に重いため高い透過力を持つ。X 線を利用し たレントゲン検査のように、宇宙線ミューオンを用いた火山や原子炉等の内部構造を見る手法 を、ミューオンラジオグラフィーと言う。物体を透過したミューオンの分布を測定することでそ の内部構造を知ることができる。我々は、この手法を利用して現在岩手山に対して、内部構造の 測定を行っている。

現在までに岩手山で収集されているデータでは岩手山方向から飛来するミューオンの数が透 過率から予測される数より非常に多いことが分かった。本研究では、検出器方向に飛来するミュ ーオンが山を透過して検出される事象と、別の角度から飛来したミューオンが山中の物質で散 乱されて、角度を変えて検出される事象をモンテカルロシミュレーションを用いて理解するこ とを最終目的としている。ミューオンは物質の密度と運動量に応じて透過力および散乱角度が 決まる。特に高い運動量(数百 GeV 以上)では物質中でのエネルギー損失や散乱だけでなく制動 放射も加味しなくてはならない。それらを総合的に考慮するために GEANT4 を用いてシミュレ ーションを行った。GEANT4 は、ヨーロッパ原子核研究所(CERN)で開発された、素粒子と物質 の相互作用をシミュレートするためのフレームワークである。

本研究発表では、GEANT4 シミュレーションを用いて任意の物質の厚さ、ミューオンの運動 量に対するエネルギー損失や散乱角度を定量的に調べた結果について報告し、今後の展望につ いて述べる。

図1:計測装置の設置の様子

BiS2系層状超伝導体の超伝導特性に対する一軸圧力効果

電子物性研究室

大西 翔太 13163080 東中 隆二,松田 達磨,青木 勇二(指導教員)

BiS2系層状超伝導体は、BiS2伝導層とブロック層が交互に積層した構造を持ち、 元素置換によりブロック層から BiS2 伝導層に電子がドープされることによって 超伝導が発現する(図1)。Biの6px,6py軌道が2次元的電気伝導を担っており[1]、 電気抵抗率は大きな異方性を持つ[2]。また、Ln(O_{0.5}F_{0.5})BiS₂ (Ln=La)の系におい て静水圧力の印加により転移温度が上昇することが報告されている[3]。本系が層 状構造を持つことを考慮すると、超伝導特性および発現機構を明らかにするため には、単結晶試料を用いて、異方的な加圧効果を調べることが重要である。様々 な元素置換と T_cの関係から、BiS₂伝導層面内の化学圧力が T_cと強く相関してい ることが指摘されているが[4]、これまでに直接的な一軸圧力印加実験は行われて いない。本系の結晶構造の一つの特徴は、2枚の隣接する BiS2伝導層が Van der Waals 力により結合した構造を持つことである。c 軸方向に一軸圧力を印加し、 超伝導特性を調べることで、この2枚のBiS2伝導層の結合が超伝導にどのように 関与しているのか知見が得られる可能性がある。そこで我々は、Nd(O_{0.5}F_{0.5})BiS₂ 単結晶試料を用いて測定を行った。初めに超伝導磁化測定を行うために装置の磁 場較正を行った。また、バックグラウンドに対して試料の磁化が1/500ほどの大 きさであったが、それを抽出する方法を構築した。そしてc軸方向に一軸圧を印 加し、c軸方向の磁化率を測定し、一軸圧に対するT。の変化を調べた。常圧から 0.38GPa まで一軸圧を変化させた際の磁化率の温度依存性を図2に示す。本測定 から Nd(O_{0.5}F_{0.5}) BiS₂の一軸圧に対する T_c、磁化率の有意な変化は見られないこ とがわかった。また、X線回折実験より、加圧後の試料は加圧前と比較して結晶 構造が変化していないことから、圧力印加による結晶構造の変化は可逆的である ことを確認した。今回は試料を圧力媒体に埋め込まない方法を用いたが、今後は さらに高い一軸圧で実験を行うために圧力の異方性を保ちつつ、圧力媒体でさら に高い圧力を印加する方法が必要である。

- [1] T. Sugimoto *et al.* Phys. Rev. B. **92**, 041113(R) (2015).
- [2] M. Nagao et al. Jpn. J. Appl. Phys. 54, 083101 (2015)
- [3] T. Tomita et al. J. Phys. Soc. Jpn. 83, 063704 (2014).
- [4] Y. Mizuguchi et al. Sci. Rep. 5, 14968 (2015).

充填スクッテルダイト化合物 YbOs₄Sb₁₂の 超伝導特性とその試料評価

電子物性研究室

岸本美晴 13163018

(指導教員) 松田達磨 東中隆二 青木勇二

強相関電子系希土類化合物として知られる典型物質群の一つに、充填スクッテルダイト化合物 *RT*4*X*12 (*R*:希土類、*T*:Fe, Ru, Os、*X*:P, As, Sb) がある。図1に示すような結晶構造をとり、12 個のプニクトゲン *X*が形成する対称性の高いカゴ内に*R*原子が位置することで、*f*電子状態の小さ な結晶場分裂、あるいは伝導電子との大きな混成効果が起きることで、低温で重い電子超伝導状態 や非フェルミ液体的異常を示す系が多数報告されている。また Sm, Yb などは複数の価数状態を取り 得るが、この価数の自由度に起因すると考えられる磁場に鈍感な重い電子状態が SmOs4Sb12[1]等に おいて報告されている。最近、我々は Yb 化合物、特に YbOs4Sb12 に注目して研究を行っている。 一般に *R* = 重希土類及び *X* = As、Sb の充填スクッテルダイト化合物では、結晶育成が難しく、た とえ育成できたとしても希土類の充填率が低下する傾向がある。この充填率の低下が、系の本質的 な振る舞いの解明を妨げている。

本研究では常圧・高圧下で Sb 自己フラックス法を用いて YbOs₄Sb₁₂の高純度単結晶を育成し、 極低温での物性測定を行った。その結果、常圧合成で最大 0.4mm、高圧合成で最大 0.2mm の単結 晶が得られ、また高圧合成法においては収量の大幅な改善に成功した。両試料において X 線単結晶 構造解析を多数行った。まず格子定数から Yb が 3 価からずれ 2 価寄りであることが分かった。常 圧合成試料においては理論値とのずれの小さい解析結果が得られ、充填率は 100%で温度因子も妥 当な値であった。高圧合成試料においても理論値とのずれは比較的小さい解析結果が得られたが、 充填率や温度因子が物理的に不適当な値であることから、常圧合成した単結晶の結晶性が良いとい うことが分かった。電気抵抗測定の結果では、常圧合成試料の残留抵抗比 RRR は高圧合成試料の値 よりも極めて大きく、また常圧合成試料は図 2 の挿入図に示される通り Tc = 0.46 K で超伝導転移 が見られるが、高圧合成試料は超伝導転移が見られなかった。以上より YbOs₄Sb₁₂においては高圧 合成よりも常圧合成によって純良な単結晶が得られることが明らかになった。また低温での電気抵 抗から見積もられる電子比熱係数 y は約 50 mJ/K²・mol であり、比較的有効質量が増強されている 重い電子系であることが示唆される。これより YbOs₄Sb₁₂は Yb の価数の自由度に起因した重い電 子系超伝導体である可能性を見出した。

[1]A. Yamasaki et al., Phys Rev Lett. PRL 98, (2007) 156402

図1:充填スクッテルダイト*RT*₄*X*₁₂ の結晶構造(*R*:希土類、*T*:遷移金属、 *X*:プニクトゲン)

図2: YbOs4Sb12の電気抵抗率の温度依存性

Smlr₂Si₂における構造異性体の結晶育成と低温物性

電子物性研究室

酒井 恭兵 13163084

(指導教員) 松田達磨 青木勇二

これまで我々は Sm 化合物における強相関電子物性を研究するなかで、SmPt₂Si₂におい て磁気モーメントの部分無秩序的磁気秩序相と、それによって重い電子状態が発現してい る強相関電子状態の可能性を見出してきた。この物性異常のメカニズムは、結晶構造に起 因した複数の相互作用の拮抗が関与していると考えられるが、我々はこの SmT₂Si₂ 系がと る 2 つの結晶構造とその電子状態の違いに注目して研究を行っている。本研究では遷移金 属 Tを lr(周期表において Pt の左隣)にした SmIr₂Si₂ について注目して研究を行っていた。

Smlr₂Si₂は育成温度により二つの構造を取りうる物質であり、左下図に示すように低温相では TrCr₂Si₂型構造をとり、高温相は CaBe₂Ge₂型をとる。SmPt₂Si₂はこの高温相と同じ CaBe₂Ge₂型構造をとることが報告されている[1]。

Smlr₂Si₂については単結晶育成の難しさから測定に必要な大きさの試料が得られず、これ まで電気抵抗率しか測定されていなかった。そのために、低温相においてより大きな Smlr₂Si₂単結晶の合成を目的として Sm,Ir,Si,Sn フラックスそれぞれの量を変え、単結晶育 成条件を探り、試料合成に挑戦した。測定に用いた試料の純良性を示す残留抵抗比 (*R*₃₀₀/*R*₂)=270 であり、また dHvA シグナルを観測できたうえに複数の高調波が観測できた ことからも、この試料は非常に高純度であると言える。この試料の場合、磁化測定には約 0.5 mg 以上のサンプル量が必要になるため、微小な単結晶を 20 個程度収集し磁化測定に用 いた(右下図)。その結果、Smlr₂Si₂の低温での磁気異方性の観測に初めて成功した。また高 温相については多結晶試料の育成を試み、X 線解析実験により試料の評価を行ったので報告 する。

[1] M. Vališka et al., J. Alloys Compounds 574, 459 (2013),

RGa₆の単結晶を用いた極低温物性測定

電子物性研究室

添川一樹 12163093

東中隆二 松田達磨 青木勇二 (指導教員)

強相関電子系希土類化合物は、希土類元素のもつf電子の自由度に起因した重い電子状態や非フェルミ液体的な振る舞いなど特異な物性を示す。*RTr X₅(R*:希土類、*Tr*:遷移金属、*X*:Ga,In)で表される三元化合物では、典型的重い電子系超伝導体 CeCoIn₅等が発見され精力的に研究が行われてきた。近年、我々は Ce *Tr*In₅に類似した結晶構造を持つ*RTr*Ga6 に注目して研究を行っている。図1(a)(b)に示すように、両構造とも正方晶系であり、*RTr*Ga6 では、Ce *Tr*In₅と比較して、Ga サイトの局所対称性が低下するという違いがあるものの、極めて酷似している構造であることが分かる。本研究では、さらにこの*RTr*Ga6 の基本構造となる *R*Ga6(図 1(c))について高純度単結晶を用いた極低温物性測定を行った。*R*Ga6は二元系ではあるが、複雑な二元温度状態図をもっているため、単結晶試料育成が難しく、近年まで詳細な物性研究がなされていなかった。*R*Ga6系の中でも CeGa6は、多結晶の研究から低温 2 K まで磁気転移等が見られず[1]、近藤効果と RKKY 相互作用が拮抗する量子臨界点近傍に位置する物質として、我々は興味深い低温物性が期待できると考えた。

PPMSを用いた低温 0.4 K までの比熱の温度依存性測定の結果(図 2)より、ゼロ磁場において 2 K付近から 1.5 Kにかけて、複数の相転移に伴う複雑な比熱の構造が見られることが分かった。 全体として λ 型の振る舞いを示すが、温度 $T_1 \sim 2$ Kにおいて肩構造を持ち、さらに $T_2 \sim 1.5$ K 付近にシャープなピーク構造を示す。磁場印加とともにこの転移はブロードになり T_1 は高温側 $\sim T_2$ は低温側へと変化していく。さらに、6 T の磁場中では転移が抑制され、ショットキー型 の振る舞いに変わる事が分かった。エントロピーを見積もると T_1 において Rln2 の 80%放出す る立ち上がりを見せ、そこから緩やかに上昇する振る舞いを見せる。この振る舞いは C/T にお いて転移温度より充分高温側から温度降下とともに比熱の上昇を見せることに由来する。この原 因として、2 つの可能性が考えられる。一つは磁気転移に伴う高温側での short range order の 発達、もう一つは近藤効果によるものである。電気抵抗測定の結果からは、まず T_1, T_2 におい て超伝導転移は確認されないことから磁気転移の可能性が高いことが分かる。また転移点以上に おいて近藤効果を示す物質に特徴的な抵抗の $-\ln T$ 依存性がみられないことから、常磁性状態の比熱に見られる振る舞いは、short range order に原因するものである可能性が高いことが分 かった。本研究では、単結晶を用いた詳細な構造解析等も行い、構造パラメータに関する特徴に ついても調べたので報告する。

[1] Y. Tagawa, J. Sakurai and Y. Komura: Less-Common Met.119,269(1986).

図2:CeGaeの比熱の温度依存性

ソフトマター物性研究室

首都大学東京 都市教養学部 都市教養学科 理工学系 物理学コース 4年 15263003 本多崇稔

自然界において、雪の結晶や高分子結晶など、樹 枝状パターン(RDP: Radial Dendritic Pattern)を 形成する系は多く存在することが知られているが、 高密度系の RDP 形成のメカニズムはまだ解明されて いない。これに対し、Lennard-Jones ポテンシャル を利用した凝集モデルの研究が行われている^[1]。この 研究の発展系として、我々はその粒子形状と凝集パ ターンとの関係を探ることにした。

本研究で用いるモデルは、粒子間の引力相互作用 を誘起させる領域を制限することが特徴である。そ の領域はシミュレーション領域の中心を発生源と し、系全体に一定速度で円形に広がっていく。これ により、中心付近にある粒子と比べて、外側にある 粒子では引力相互作用の誘起に時間遅れが生じるこ ととなる。引力相互作用の働く領域の境界は相互作 用のトリガーとみなすことができ、境界が広がる速 度を v_{tri} とする。このモデルの area fraction ϕ = 0.88 (粒子数N = 9000), v_{tri} = 10⁻⁵, 粒子の縦横比 α = 1.0 (円)の条件において、樹枝状パターンが形成 されることが報告されている。^[1](図 1)

本研究では、粒子の形状を楕円形にした場合、凝 集パターンはどう変化するのかをシミュレーション 実験によって調べた。粒子の楕円形を再現するため に用いたポテンシャルは Gay-Berne ポテンシャルで

図1. φ=0.88, v_{tri}=10⁻⁵, α=1.0の凝集パターン

ある。本研究の計算条件は、 $\alpha = 1.0, 1.1, 1.3, 1.5$ の 4 通りとし、 $\phi = 0.68$ (N = 7000), 0.88の 2 通り、 $v_{tri} = 10^{-1}, 10^{-5}$ の 2 通りについて、合計 16 通りで ある。

 $\phi = 0.88, v_{tri} = 10^{-5}, \alpha = 1.5$ の条件における凝集 パターンを図2に示す。図2の計算条件は、先に示 した図1の計算条件のうち、 α の値のみを変えたもの であるが、凝集パターンの明らかな違いが確認され た。 $\phi = 0.88, v_{tri} = 10^{-5}$ において、 α のその他の値 についても凝集パターンを調べたところ、 α の値が大 きくなるにつれて、クラスターの数が増加していく 傾向が得られた。この α の値とパターンとの関係に ついて、粒子の移動速度と v_{tri} を比較することにより 考察を行った。

本研究においては、シミュレーションに要する時 間などの都合により、1通りの初期配置に対してのみ シミュレーション実験を行った。今後の展望として は、複数の初期配置に対して計算を行い、統計的な 解析などを行うことで、より精度の高い議論ができ ると考えている。

[1]: Oikawa, N. and Kurita, R. A new mechanism for dendritic pattern formation in dense systems. *Sci. Rep.* 6, 28960; doi: 10.1038/step28960 (2016)

図2. φ=0.88, vtri=10⁻⁵, α=1.5の凝集パターン

泡沫における superdry-dry 転移の解析

ソフトマター物性研究室

柳沢 直也 13163043 栗田 玲、及川 典子(指導教員)

泡沫(foam)とは、液体や固体中に気泡(bubble)が混み合って内包されている状態の ことであり、2つの相の性質をもち合わせるため、機能性が高く、ビールの泡・洗剤・発泡 スチロールなど、日常生活の多くの場面で利用されている。液体・気体泡沫を記述する重要 なパラメーターの1つに液体分率φ(泡沫全体積に対する液体体積の割合)がある。泡沫は 従来、内包されている気泡の形状によって経験的に分類されてきた。 ϕ が低く、形状が多面 体(多角形)のときを dry 状態、 ϕ が増加し、形状が球形(円形)のときを wet 状態と呼 んだ。それぞれの状態で物理的性質(粘弾性など)が異なることは知られていたが、dry と wet の明確な定義は曖昧なままであった。先行研究において、泡沫の崩壊過程に注目し、気 泡の形状の ϕ 依存性を調べたところ、 ϕ_1, ϕ_2 で気泡の形状が不連続に変化することが分か った。 $\phi < \phi_1$ を superdry、 $\phi_1 < \phi < \phi_2$ を dry、 $\phi_2 < \phi$ を wet と状態をそれぞれ命名した。 dry-wet 転移は気泡の再配置と関係があり、泡沫の弾性と表面張力の競合によって起こるこ とが分かった。一方、superdry では気泡の形状が内部まで大きく歪んでいるのに対し、dry では歪みが表面に局在し、内部の歪みは解消されていた。これは表面張力の伝播という力学 特性が異なっていることを意味するが、その起源についてはよく分かっていない。[1]

気泡の形状の歪み具合んの液体分率φ依存性

[1]:Yujiro Furuta, Noriko Oikawa & Rei Kurita. Close relationship between a dry-wet transition and a bubble rearrangement in two-dimensional foam. Scientific Reports 6, (2016)

本研究では、superdry-dry 転移の物理的な起源の解明を目指す。superdry では気泡同士 が押し合い、気泡内の圧力は高まっており、dry では気泡の押し合いが弱まるため、圧力が 小さくなると予想した。気泡と気泡の間にある液膜は、厚み方向に水との圧力差によって曲 げられる。この曲率半径を精度良く測定するために、顕微鏡を用いて泡沫の崩壊過程のミク ロ観察を行った。その結果、界面の厚みは初期では一定だったものの、ある時刻を境に増加 し始めることを見つけた。今回はこれについての解析と考察、superdry-dry 転移との関係 について発表する。

t=44000sec

界面の厚みの時間変化

粉体における構造と force chain の関係性

ソフトマター物性研究室

沖山 綾馬 13163038 栗田 玲 及川 典子(指導教員)

粒子径に分布があり、数マイクロから数ミリの大きさの粒子集団を粉体という。粉体は 固体粒子の集まりであるにも関わらず液体や気体のような流動性を持っている。このよう な力学的挙動は摩擦や非弾性衝突による非平衡系によるため統計力学的な記述が難しく、 粉体の持つ性質によって引き起こされる現象には理解が進んでいないものが多く存在して いる。また粉体はその粒子径分布と摩擦によって force chain と呼ばれる力のネットワーク 構造を内部に形成する。砂山を作り底面の圧力分布を測定すると、その分布が砂山の作り 方に依存することが知られている。これは force chain の構造が砂山の作り方によって変化 するからである。

粉体の力学的挙動を記述するために force chain の理解は不可欠であるが、force chain の メカニズムについてほとんど理解されていない。我々は粉体のミクロな内部構造との関係 に注目して研究を行った。

force chain を観測する方法の一つとして光弾性法が使われる[1]。アクリルやプラスチックなどの透明で一様な物質に力を加えて光を入射させると、屈折率異方性が生じることで 複屈折を起こすことが知られている。このような物質で粉体のモデルを作り光を入射させ ることで force chain を観測すること出来る。

今回の発表では作成した二次元粉体モデルに対して光弾性法を用いた force chain の観測 結果と、装置を使用した今後の展望について述べる。

(1) 二次元粉体モデルと force chain

中性子星合体による重元素合成機構解明へ向けた

多価イオンの可視分光

原子物理実験研究室 阿久津卓土 指導教員 田沼肇

1 はじめに

重元素の起源としては長らく超新星爆発が有力であっ たが、最近の研究によって中性子星合体の可能性が高い とする説も浮上してきた。中性子星合体は重元素合成に よって可視光を放つことがわかっているため[1],その スペクトルを測定できれば、重元素の放出量がわかり, 合成機構とその起源を解明できる。

但し、これを行うためには著しく不足している重元素 の分光データを整備する必要がある。そこで本研究で は、まず可視分光システムを立ち上げ波長較正と動作確 認を行なった。そして、重元素の一つである Er(エルビ ウム、原子番号 68)多価イオンの生成と可視領域での電 荷交換分光測定を行った。

2 可視分光システム

可視分光システム(図1)の概要は次のとおりである。 まず,ECRIS(電子サイクロトロン共鳴イオン源)で生 成した多価イオンを磁場によって価数選別し,中性標的 ガスと衝突させる。ここで,電荷交換によって励起状態 が生成すると,より安定な状態へ遷移する際に発光する。 この発光をレンズでファイバーへ集光し,分光器を通し て CCD カメラで観測することで分光測定を行う。本シ ステムの波長較正には,水銀の既知の発光線を用いた。

図1 可視分光システム概略.

3 Er 多価イオンの生成と可視分光

ECRIS で生成した酸素プラズマによってチェンバー 内の金属 Er ロッドをスパッタし,さらに電子衝撃によっ て電離させることで Er 多価イオンを生成した。マスス ペクトルを図2に示す。Er は4価から10価程度まで生 成されており,スペクトルの細かな分裂は同位体(質量 数162-170)によるものである。

図2 Er 多価イオンのマススペクトル.

次に 6 つの衝突系 $Er^{4+}/Er^{5+} - Ar/O_2/N_2$ で可視領域 の分光測定を行ない,454 nm 付近に幅広いピークを確認 した。Ar 標的での測定結果を図 3 に示す。強度はビー ム強度,測定時間,標的のガス圧で規格化した。図 3 か らもわかるように,このピークの強度は入射多価イオン が Er^{4+} のときより Er^{5+} のときのほうが強かった。低価 数イオンでは一電子捕獲よりも二電子捕獲が支配的とな る場合があることから [2],このピークは Er^{3+} の発光と 考えられる。

図3 Ar標的でのEr多価イオンの分光測定結果.

4 今後の展望

測定時間,ビーム強度が不十分な実験の再実験や,観 測していない領域での実験,Erの価数を変えた実験をし た上で,理論計算と比較して遷移を同定していく。また Er以外の重元素にも同様に取り組み,重元素の分光デー タ充実を目指す。

参考文献

- M. Tanaka, K. Hotokezaka, "Radiative transfer simulations of neutron star merger ejecta", 2013, ApJ 775, 113.
- [2] K. Ishii, A. Itoh, K. Okuno, "Electron-capture cross sections of multiply charged slow ions of carbon, nitrogen, and oxygen in He", 2004, PRA 70, 042716.

冷却過程研究に向けたグリシン正イオンの蓄積実験

原子物理実験研究室

栗山みさき 13163059

古川 武,田沼 肇 (指導教員)

近年、イオンビームトラップや静電型イオン蓄積リングなど、原子・分子イオン蓄積技 術が飛躍的に発展し、孤立環境下にある原子分子の研究が精力的に進められている。特に、 高温な、つまり高振動励起状態にある孤立分子の輻射冷却過程は, 競合する遅延解離過程 との比較から、宇宙空間での分子存在量を紐解く鍵にもなる重要な事象である。中でも孤 立環境でのアミノ酸分子の冷却過程は、生命の起源にも関連した興味深いトピックスの1 つである。

本研究では、アミノ酸の中で最も構造が単純なグリシンの孤立環境下での冷却過程観測 に向けて、静電型イオン蓄積リング(E-Ring)を用いたイオン蓄積を行った。E-Ring はレー ストラック型のイオン蓄積装置で、装置内部は10⁻⁹Pa 台の高真空に保たれており、残留ガ スなど粒子との衝突が少ないため長時間にわたる(秒程度)イオン蓄積が可能である。図1 に実験の概略図を示す。ペレット状(粉末状のグリシンを圧縮プレス機で押し固めたもの) のグリシン試料とグラファイト試料を半円ずつ組み合わせた試料に対してパルス Nd:YAG レーザー光(波長: 266 nm, パワー: 5 mJ/pulse)を照射し、レーザーアブレーション法で正 イオンを生成した。生成されたイオンは電場でおよそ 15 keV まで加速され E-ring 内に入 射した。一方の直線部分の延長線上に中性粒子検出器(MicroChannel Plate, MCP)を設 置し、高温な蓄積イオンの遅延解離過程によってできた中性粒子収量の蓄積開始からの時 間変化を測定した。得られた中性粒子信号を離散フーリエ変換(DFT)して得られた周回周期 から蓄積イオン質量を求めたところ、質量数が 76 であり、グリシンに水素が付加した正イ オンであると考えられる。

図 1:E-Ring 全体の概略図。イオン源で生成 後のイオンは赤い矢印で示した軌道で周回 する。周回中、直線部で解離した中性粒子は 緑の矢印に沿って MCP で検出される。

図 2:グリシンイオンの蓄積結果。横軸は蓄積 開始からの時間、縦軸は対数目盛の中性粒子収 量。周回ごとの直線部で解離した中性粒子を検 出するため、周期的な信号が得られる。赤の両 矢印で表したイオンの周期は 39.99 µ s であっ た。

炭素クラスター負イオンのポアンカレ蛍光測定

原子物理実験研究室

吉田茉生 (13163078) 田沼肇,古川武 (指導教員)

孤立環境に置かれた高温, つまり高振動状態にある分子の冷却される過程は, 原子分

子物理学だけでなく宇宙での分子合成進化にも関連し た重要な事象である。これまで衝突などにより生成さ れた高温な星間分子は,電子励起エネルギーが電子基 底状態の振動エネルギーに変換されるという内部転換 の後,振動遷移により赤外線としてエネルギーを放出 することで冷却が進むと考えられてきた(図1)。この過 程は数ミリ秒~数秒という長い時定数を持つ。このた め生成直後の高温で不安定な負イオンは冷却により安 定となる前に壊れ,宇宙のような孤立環境下では存在 しにくいとされていた。

本の矢印が新たに分かったポアンカレ 蛍光による冷却過程

しかし分子によっては内部転換の逆過程である逆内部転換により振動エネルギーが 電子励起エネルギーに変換され,さらに電子遷移によってポアンカレ蛍光とよばれる 光を放出して基底状態に戻るという過程が存在する(図1赤線)。この過程は振動輻射過 程に比べはるかに速い数マイクロ秒という時定数をもつ。本過程によって急速に冷却 されると負イオンでも壊れる前に安定となり生き残りやすくなるため、宇宙空間にこ れまでの予想よりはるかに多くの負イオンが存在することが期待される。

ポアンカレ蛍光の研究は近年始まったばかりで、特に蛍光の直接観測は炭素鎖分子 負イオン C₆に対して原子物理実験研究室の静電型イオン蓄積リング(TMU E-ring)を 用いて行われたのみである。私はこの E-ring を用いて C₆に加えて C₄ からのポアンカ レ蛍光観測を行った。E-ring は 10⁻⁹ Pa 台という超高真空下でイオンを長時間(数秒程 度)蓄積可能な装置であり、孤立分子の冷却過程観測に適している。実験は E-ring にレ ーザーアブレーションイオン源で生成した高温な C_n (*n*: 2-6)イオンを入射し、直後約 0.2 ms 間, E-ring の光学窓に設置した集光レンズと光電子増倍管から成る光検出系で 検出される光強度の時間変化を測定した。励起準位に関する理論計算の文献値から C₄ と C₆それぞれのポアンカレ蛍光波長を推測し、目的の波長の光だけを透過するバンド パスフィルター(C₄: 460(7)nm, C₆: 607(35)nm)を使用した。測定の結果、C₄の蛍光 は C₄:用フィルターだけでなく C₆:用フィルターを通しても観測された。このことはポ アンカレ蛍光のスペクトル構造が幅広いことを示唆しており、このようなスペクトル 構造を取る原因など新たな興味が持たれる結果と言える。

強相関電子論研究室

石飛 尊之 13163020

指導教員:服部 一匡

Onnes による超伝導の発見 (1911) 以来約 50 年の間, この現象に対する微視的な理論は確立されなかった. 1957 年, Bardeen, Cooper, Schrieffer によって発表された BCS 理論は, 種々の実験値を再現した. BCS 理論では電子の間にフォノ ンの交換による有効引力が働き, 重心運動量 0 の電子対 (Cooper pair) が形成され, 対がボーズ凝縮することで励起に有限の ギャップを生じる. BCS 理論はゲージ対称性を破る平均場理論であり, 超伝導状態では $\langle c_k c_{-k} \rangle \neq 0$ であるのが, この理論の 著しい特徴である. 以下の秩序変数 Δ_k はフェルミ面上でのギャップを与え, Δ_k をギャップ関数と呼び, 以下のギャップ方程 式を満たすように自己無撞着に決定される.

$$\Delta_k = -\sum_{k'} V_{k,k'} \langle c_k c_{-k} \rangle = -\sum_{k'} V_{k,k'} \frac{\tanh(\frac{1}{2}\beta E_{k'})}{2E_{k'}} \Delta_k$$

ここで, $E_k = \sqrt{\epsilon_k^2 + |\Delta_k|^2}$, ϵ_k はフェルミ面を基準としたエネルギー, β は逆温度である.

BCS による論文では、ギャップ関数が等方的で波数によらないと仮定していたが、³He の超流動や高温超伝導体の発見以降、ギャップ関数にノードが存在するものを非従来型超伝導と呼び、注目を集めている. ギャップのノード構造は系の対称性から厳密に決められることもあるが、螺旋、映進の対称操作をもつような非共型な系に対しては、対称性による分類がなされていないものが多く、近年盛んに研究されている.

本研究では、そのようなものの中で、映進の対称操作をもつダイヤモンド格子上の超伝導状態を解析する.

s 電子系に対し, ハミルトニアン $H = H_0 + H'$ を考える. ここで H_0 は第 4 近接点までのホッピングを考慮したもの. 相 互作用 H' は以下のオンサイト U 及び最近接のクーロン相互作用 V と交換相互作用 J を考慮した.

 $H' = U \sum_{i} (n_{ai\uparrow} n_{a_i\downarrow} + n_{bi\uparrow} n_{bi\downarrow}) + V \sum_{\langle i,j \rangle} \sum_{\sigma\sigma'} n_{ai\sigma} n_{bj\sigma'} + J \sum_{\langle i,j \rangle} \sum_{\sigma\sigma'} S_{ai} \cdot S_{bj}$

ここで、a, b は単位胞内の 2 つの原子を、i, j は単位胞の位置を、 σ, s はスピンを表す. このハミルトニアンに BCS 理論を 適用し、転移温度、ギャップ関数などを解析した. まず、電子数、U, V, J を変化させ、発現したギャップ関数を対称性で分類 した. ダイヤモンド格子は空間群 Fd3m に属し、格子点での局所点群は T_d であり、ギャップ関数は T_d の既約表現で分類さ れる. 等価でない関数が同じ既約表現に属することがあり、今回のモデルでは d_{yz} 波と g_{x^2yz} 波、 p_x 波と $h_{xy^2z^2}$ 波が同じ 表現 T_2 に属する. ただし、スピン軌道相互作用を考えない今回のモデルでは、前者 2 つはスピン一重項、後者 2 つはスピン 三重項のギャップ関数となり、両者は混成しない. 図1 にサイトあたりの電子数 1.2, U = 3(最近接ホッピングを1 として いる) での V-J 相図を示す. A 相は常伝導、B 相は T_2 スピン三重項 $(p_z, h_{x^2y^2z})$ 波、C 相は T_2 スピン一重項 (d_{xy}, g_{z^2xy}) 波である. 広い領域で p_x 波成分の大きいギャップ関数が得られた. 図 2 にサイトあたりの電子数 1.2 でのフェルミ面と、 U = 3, V = 0, J = -2でギャップ関数のフェルミ面上でのノードを示す. $k_x = 0$ でフェルミ面上にラインノードができて いる. 発表ではノード構造についての詳細と、計算の手法について述べる.

図 1: BCS 理論による V-J 相図. サイト数あたりの電子数 1.2, U = 3

図 2a: サイト数あたりの電子数 1.2 での

外側のフェルミ面 (紫) と Δ_k のノード 図 2b: サイト数あたりの電子数 1.2 での (赤). 図を見やすくするため一部だけを 内側のフェルミ面 (青) と Δ_k のノード 描いている. 黒い枠はブリルアンゾーン (赤). 黒い枠はブリルアンゾーンの境界. の境界.

正二十面体スピン模型におけるスピン相関

強相関電子論

13163006 今泉誠司 指導教員:服部一匡

正三角形の各頂点に配置されたスピンが反強磁性的に相互作用する模型を 考える。図1(a)のように二つのスピンの向きを決めると三つ目のスピンは どの向きを向いてもかならずエネルギーを損してしまい、全ての相互作用エ ネルギーを最低にすることができない。この様な系をフラストレートした系 と呼ぶ。また、フラストレートした系はスピンの安定な向きをきめる異方性 の符号や大きさにおいて多彩な相転移がおこる事が知られている。

本研究では、正二十面体スピン模型のスピン相関について厳密対角化法を 用い解析を行った。(図1(a)参照)正二十面体は正三角形を面として構成され ているが、その五回対称性の為、並進対称性と相容れない。このようなクラ スターは図1(b)のように並進対称性のない準結晶化合物においてしばしば実 現しており、注目を集めている[1]。

本研究で用いたハミルトニアンは正二十面体上の反強磁性ハイゼンベルグ 模型に異方的相互作用を加えた以下のハミルトニアンである。

$$H = J \sum_{\langle i,j \rangle} S_i \cdot S_j + K \sum_{\langle i,j \rangle} (r_i \cdot S_i) (r_j \cdot S_j)$$

ここで、か0は最近接点間の反強磁性相互作用、Kは異方的相互作用、r_iは正 二十面体の中心から頂点 i の方向の単位ベクトルを表す。厳密対角化法によ り全固有エネルギーを求めると、図2のようにKの関数として二つの異なる 基底状態が実現することが明かになった。発表では、これらの基底状態での スピン相関と比熱の温度依存性について議論する予定である。

参考文献

[1] S. Matsukata et al., J. Phy. Soc. Jpn 83, 034705 (2014)

平均場近似によるアンダーソンモデルの解析

強相関電子論研究室

中村 憲吾 13163012 堀田 貴嗣(指導教員)

金属に微量の磁性不純物を混ぜると、低温で電気抵抗に極小が現れるという現象は 1930年代には知られていたが、その機構は1964年に近藤淳によって明らかにされ、金 属中の磁性不純物に関する諸問題は、現在では「近藤効果」と総称されている。近藤効 果を調べるモデルはいくつかあるが、そのうち、1961年にアンダーソンが提案したモ デルが代表的なものの一つである。アンダーソンモデルは、今ではほぼ完全に解かれて いるが、本研究ではあえて平均場近似で解析し、厳密対角化法によって解いた結果と比 較することで、電子相関の物理を理解する第一歩とすることにした。

本研究では、次のような形のアンダーソンモデルを考える。

$$H = -t\sum_{i,\sigma} (c_{i\sigma}^{\dagger}c_{i+1\sigma} + c_{i+1}^{\dagger}c_{i\sigma}) + V\sum_{\sigma} (c_{1\sigma}^{\dagger}d_{\sigma} + d_{\sigma}^{\dagger}c_{1\sigma}) + \varepsilon_{d}\sum_{\sigma} n_{\sigma} + Un_{\uparrow}n_{\downarrow}$$

ここで、 $c_{i\sigma}$ および d_{σ} は、i サイトにおけるスピン σ の伝導電子および不純物サイトのス ピン σ の局在電子の消滅演算子、tは伝導電子の跳び移りエネルギー、Vは局在電子と 伝導電子の混成、 ε_{d} はエネルギー準位、 $n_{\sigma} = d_{\sigma}^{\dagger}d_{\sigma}$ 、Uはクーロン相互作用である。本 研究では、不純物サイトの平均電子数は 1 とし、伝導電子系の境界条件は開放端とす る。また、今回の計算はすべて絶対零度で行った。

一つの粒子は周囲の粒子から様々な力を受け運動しているが、周囲の粒子の密度を平 均化して相互作用の効果を扱うのが平均場近似である。実際の計算では、平均場ハミル トニアンを対角化して不純物サイトの平均電子密度<n₁>と<n₁>を自己無撞着に求める。 その結果、下図のように、Uが小さいときは<n₁>=<n₁>と金属的であるが、Uが大きく なると<n₁>≠<n₁>の磁性解が生じることがわかった。これはもちろん、アンダーソン自 身による平均場近似の結果と同じである。本研究ではさらに、小さいサイズではあるが、 厳密対角化法によってアンダーソンモデルを解き、磁性解のエネルギーが高くなってい

平均場近似による不純物サイトの平均電子数のU依存性。全サイト数=10で計算した。

ボーズ・アインシュタイン凝縮した冷却原子の数値解析

量子凝縮系理論研究室

土居 彩香 13163009

- 佐倉 叶恵 13163033
 - 森 弘之 (指導教員)

粒子を冷却していき、絶対零度の近くまで冷やされたときボーズ・アインシュタイン凝縮(BEC)が起こる。ボーズ・アインシュタイン凝縮とは、多数のボーズ粒子が1つの量子状態を占めることで現れる物質の状態のことである。ボーズ・アインシュタイン凝縮が起こると、個々の粒子の微視的な量子状態の効果が巨視的なスケールの粒子集団の凝縮現象として発現する。アルカリ金属原子気体凝縮の一般的な流れは、まず予備冷却された気体原子を超真空中で大量に集める。次に磁場トラップに移行し断熱圧縮し、最後に蒸発冷却法により冷却する。冷却方法として蒸発冷却の他にレーザー冷却も挙げられる。

偶数個のフェルミ粒子から構成される原子は、ボーズ粒子と見なすことができる。上記の 通りこの原子から成る集団をレーザー冷却するとボーズ・アインシュタイン凝縮し、ボー ズ原子は、1つの最低エネルギー状態を占有するようになる。そこで、相互作用ある場合の BEC の構造についてグロスピタエフスキー方程式(GP 方程式)に基づいて考えると、平 均粒子間距離に比べ十分に小さいとき、非一様なボーズ気体の絶対零度の性質を説明する ことができる。

$$-\frac{\hbar^2}{2m}\nabla^2\psi(r) + V(r)\psi(r) + U_0|\psi(r)|^2\psi(r) = \mu\psi(r)$$

本実験では MATLAB を使用し冷却原子の数値解析を行う。変化させるパラメタは外部ポテ ンシャルや GP 方程式の質量、相互作用、角速度である。調和型ポテンシャルと比較しそれ ぞれの関係性を観察する

調和型ポテンシャルにおける粒子密度(左)と位相(右)

ϕ^4 模型に対する実空間くりこみ群の適用と Wilson-Fisher 固定点の解析

量子凝縮系理論研究室	13163061	清水貴勢
	指導教員	大塚博巳

くりこみ群は臨界現象の解析において最も有用な手法の一つである。粗視化とスケーリ ングにより短いスケールの揺らぎを排除することで、臨界現象において本質的な長いス ケールの現象を取り出すことができるため、従来の数値計算や平均場理論に代わる手法と して注目を集めてきた。その中でも摂動論的くりこみ群方程式はその汎用性から様々な系 の解析に用いられている。本研究では連続化した Ising 模型である ϕ^4 模型:

$$\mathcal{H} = \int d^d r \left[\frac{1}{2} (\nabla S(r))^2 + t a^{-2} S(r)^2 + u a^{d-4} S(r)^4 + h a^{-d/2 - 1} S(r) \right]$$

の摂動論的くりこみ群方程式を導出し、Wilson-Fisher 固定点を解析することで Ising 模型の臨界指数を計算する方法をまとめた。但、S(r) は連続化した場のスピンを表し、a は格子間隔を表す。t,h,u は Gauss 固定点からみたスケーリング変数で、t,h はそれぞ れ温度と磁場に対応している。この模型は4次元以上では Gauss 固定点における臨界現 象を示すが、4次元以下では Gauss 固定点において u が有意な変数となるために Gauss 固定点における臨界現象は観測できない。そこで、四次元以下で u が有意でない変数と なるような固定点を探すために、 ϕ^4 模型の分配関数を Gauss 固定点からのずれで展開 し、演算子積展開を用いた粗視化により実空間くりこみを行うことで摂動論的くりこみ群 方程式を導出し、これを解析した。その結果 $t \ge u$ に関するくりこみ群 flow の図が得ら れ (図1)、u が有意でない変数になるような固定点の付近に見つかった。

1

そこで $\varepsilon = 4 - d \varepsilon$ 用いてこの固定点の 位置を Gauss 固定点からのずれで表し、3 次元における臨界指数を ε の一次までの摂 動で求めた。一方3次元 Ising 模型の臨界 指数は有限サイズスケーリングを用いた数 値計算により求められている [1]。発表当日 はこの数値計算結果と摂動解の比較に加え、 くりこみ群の解説も行う。

参考文献

 A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081(1991).

図 1 ϕ^4 模型のくりこみ群 flow

二次元 XY 模型に見られる Berezinskii-Kosterlitz-Thouless 転移について

量子凝縮系理論研究室	13163029	渡邊智行
	指導教員	大塚博巳

2016 年ノーベル物理学賞の受賞理由の中の重要なテーマの一つとして Berezinskii-Kosterlitz-Thouless (BKT) 転移と呼ばれる現象の解明がある。この理論によって従来相 転移が起きると考えられていなかった二次元連続スピン系での相転移を説明することが可 能となった。[1] 本研究では以下のハミルトニアンで表される二次元 XY 模型を扱う:

$$H = -J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j, \quad \mathbf{S}_i = (\cos \theta_i, \sin \theta_i) \tag{1}$$

但、Si は正方格子状のスピン、J はスピン間相互作用を表し、和は最近接格子点 対についてとる。この系の特徴は Ising 模型等がもつ離散対称性と異なり位相の周 期性から連続対称性をもつことである。これによりスピンが渦状に並ぶことが許 され、その渦に注目することで BKT 転移を解析することができる。低温で渦は電 荷中性条件を満たす渦対として励起されるが転移点を越えることで渦が単体で存 在できるようになる。二次元 sine-Gordon モデルがこの転移を扱う際の有効理論 となる。このモデルは最近接スピンはほぼ同じ向きとするガウスモデルに対して 渦を表す項が摂動として作用しているとみなすことができる。更にこのモデルを 用いて BKT 転移のくりこみ群を用いた解析が可能となる (清水氏の講演を参照)。 結果のくりこみ群フローを右図に示す。

1

また BKT 転移をとらえるのに役立つ物 理量としてヘリシティーモジュラス が ある。 は系の一方向に対して位相ひねり を加えた際の自由エネルギーの応答として 定義されるが、それをモンテカルロシミュ レーションを用いて調べることにより が BKT 転移点にて不連続になる様子を確認し た。発表当日は解析の詳細と結果の考察、 や相関関数の数値計算の詳しい結果を示す。

参考文献 [1] J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).

図 1 くりこみ群方程式のフロー (横軸 は温度、縦軸は渦密度を表す尺度になる フガシティー、青実線は現実の系での操 作を表す。)

「すざく」衛星による地球周辺からの 太陽風電荷交換X線放射の系統探査

宇宙物理実験研究室 伊師大貴

1996年、彗星からのX線放射の発見をきっかけに電荷交換反応が注目されるようになった(Cravens et al. 1997 J. Geophys. Res. Lett.)。電荷交換反応とは、中性原子と高階電離したイオンの衝突により中性原子の 電子がイオンに移動する反応であり、イオンの外殻に捕捉された電子はX線の輝線を放出して基底状態に落ち て行くが、そのスペクトルには禁制線や高励起状態からの輝線が含まれる。さらに、10⁻¹⁶ cm² もの大きな反 応断面積を持つため、惑星周辺の希薄なガスを捉える新たな手段として注目されている。

近年、X 線天文衛星「すざく」などによって、地球周辺からの太陽風イオンによる電荷交換反応 (Solar Wind Charge eXchange : SWCX) が発見されてきた (Fujimoto et al. 2007 PASJ, Ezoe et al. 2010 PASJ, Ezoe et al. 2011 PASJ, Ishikawa et al. 2013 PASJ など)。これらは全ての X 線観測においてバックグラウンドと なるため重要な上、WIND 衛星など太陽風観測衛星のデータを併用すれば、大気密度や磁気圏構造などの地球 環境を探ることが可能である。

先行研究において、「すざく」衛星による地球周辺からの SWCX 放射の系統探査が行われた(Ishikawa, K. 2013 Ph. D thesis, Tokyo Metropolitan University)。SWCX 放射の観測には、低いバックグラウンドと高 いエネルギー分解能を誇る「すざく」衛星の X 線 CCD 検出器が適しており、2005 年 8 月から 2011 年 9 月の 2031 データ中 38 データで SWCX 放射の検出に成功した。

本研究では、2011 年 10 月から 2015 年 5 月の 1024 データに対して SWCX 放射の系統探査を行った。具体 的には、(1) SWCX 放射の OVII と OVIII の輝線が支配的な 0.5–0.7 keV での X 線強度の時間変動と WIND 衛星が観測した太陽風陽子フラックスの時間変動を比較し、それぞれの変動に相関が見られるデータを選び出 す、(2) 選び出されたデータに対して、X 線強度が変動している時間帯を増光時、変動していない時間帯を平 穏時と定義し、それぞれのイメージを比較して増光領域を確かめる、(3) OVII の輝線が支配的な 0.52–0.6 keV での X 線強度と太陽風陽子フラックスの相互相関関数を計算し、「すざく」衛星と WIND 衛星の位置の違い による数 1000 秒の時間遅れを確かめる、(4) これらが確かめられたデータのうち、増光によるスペクトルが C,N,O からの 6 本の輝線と 0.3 keV 以下の増加分を合わせた計 7 つの成分で表せられるものを地球周辺からの SWCX 放射とみなす、という 4 段階で評価した。本発表では、先行研究の結果と合わせて、SWCX 放射の検 出数と太陽活動の相関などの考察を行う。

Net is sumple to the second se

図 1: 0.5–0.7 keV での観測天体(上段)とバックグ ラウンド(中段)のX線強度の時間変動と太陽風陽 子フラックスの時間変動(下段)。

図 2: SWCX 放射による増光スペクトル(黒十字) と SWCX モデルフィッテングの輝線成分(点線)。

超小型バイナリブラックホール探査衛星 ORBIS 搭載に向けた MEMS X線光学系の振動試験

宇宙物理実験研究室

野田 悠祐 13163097

X 線天文学において、X 線を集光し結像するための X 線望遠鏡は必須である。X 線はほとんどの物質に対し屈折率が1 よりも小さいため、可視光のように直入射を用いて集光をすることができない。よって X 線望遠鏡では X 線を反射鏡上で全反射させて集光する斜入射光学系が用いられる。また現在主流となっている X 線天文衛星の多くは、性能を追求した巨大かつ、莫大な開発費が必要な衛星である。そのため、国際協力を含めた多くの機関が協力し、一つの衛星を作り上げることが多く、その衛星を一つのミッションで長い期間に渡り運用することは難しい。よってバイナリブラックホールのような、観測に長期間の長さが必要とされている物の観測のために、ミッションを限定し、少人数で開発できる、低予算、小型の衛星の需要が生じている。そこで首都大学東京航空宇宙システム工学域を中心に開発されている超小型バイナリブラックホール探査衛星 ORBIS がある。しかし X 線の集光に用いる望遠鏡部分は、前述したような工法で作られたものは質量が大きすぎて搭載することが不可能である。したがって従来のものとは異なる、小型、軽量かつ性能の良い望遠鏡が必要とされている。

そこで我々は Micro Electro Mechanical Systems(MEMS) 技術を用いた、新しい X 線光学系、MEMS X 線光学系を開発している。シリコンウェハーにドライエッチングで幅 20µ m、深さ 300µ m 程度の高アスペ クト曲面穴構造体を製作し、高温アニールで穴の側壁を平滑化することで、この側壁を反射鏡として用いる。 そして高温塑性変形で球面変形を行い、重金属膜付を行うことで反射率の向上を図り、これを 2 段に重ねるこ とで超軽量の Wolter I 型斜入射光学系が完成する。

本研究では ORBIS 搭載に向けて、実際の打ち上げ時に用いる予定の仕様の MEMS X 線光学系、ホルダを 用いた初めての振動試験を、東京大学中須賀研究室にある振動試験装置と振動発生器をお借りして行なった。 与える振動レベルは H-IIA ロケットの Qualification Test(QT) レベルのもので、X、Y、Z 軸それぞれについ て加振を行なった。結果として MEMS X 線光学系、ホルダ共に振動に無事耐えることが出来た。本発表では 振動試験の詳細と、その結果について紹介する。

図 1 MEMS ミラーを用いた Wolter I 型斜入射光学系

図2 超小型バイナリブラックホール探査衛星 ORBIS

化学機械研磨を用いた

MEMS X線光学系の形状改善に向けた研究

宇宙物理実験研究室

13163013 藤谷 麻衣子

本研究では、マイクロマシン (MEMS) X 線望遠鏡の性能改善に向けて、化学機械研磨プロセスの導入を検 討した。

X 線天文学において天体からの微弱な X 線を集光し結像する光学系は必要不可欠である。また X 線に対す る物質の屈折率は1よりもわずかに小さいために、可視光のように直入射を用いたレンズでは集光することは 困難である。そこで X 線望遠鏡では X 線を反射鏡上で全反射させる斜入射光学系が広く用いられている。将 来の X 線天文学には軽量で優れた光学系が求められている。そこで我々は新しい MEMS X 線光学系を独自 に考案し、開発を進めている。これはシリコンドライエッチングによって幅 20 µm、深さ 300 µm 程度の高 アスペクト比の曲面穴を持った光学系である。また高温アニールにより反射面の平滑化を行い、高温塑性変形 で構造体を球面に曲げ、2 段に重ねて Wolter I 型光学系が完成する。これまでの MEMS X 線光学系の製作 では、シリコンドライエッチング後に曲面穴の側壁の両端にバリやくぼみが必ず出来てしまい、本来集光でき るはずの X 線を妨げるという問題点があった。

そこで、光学系の表面を削ることでバリやくぼみを減らして形状を改善する方法を検討した。本来の 300 μm より厚い 400 μm で光学系の製作を行い、化学機械研磨により表面を両側 50 μm ずつ削った (D-process 社)。これにより形状は改善した。また、研磨前後の有効面積の変化についてシュミレーションを行った。本 発表ではこの概要と結果、今後の取り組みについて紹介する。

図 1 シリコンドライエッチング後の MEMS X 線 光学系の写真。

図2 化学機械研磨の概念図。

図3 化学機械研磨前後の MEMS X 線光学系反射鏡側面の典型的なプロファイル。

TES 型 X線マイクロカロリメータの加速器環境下での性能評価

宇宙物理実験研究室

13163056 早川亮大

現代の X 線天文学において,検出器はより精密な分光性能を要求されている。そこで,我々のグループでは,高い エネルギー分解能をもつ検出器として,超伝導遷移端温度計(TES: Transition Edge Sensor)型マイクロカロリメー タの開発および,運用を進めている。TES型マイクロカロリメータは,超伝導薄膜の相転移時の急激な電気抵抗の変 化を利用することで,優れたエネルギー分解能を実現することのできる検出器である。

また,我々のグループでは,TES型X線マイクロカロリメータの地上応用の一環として,ハドロン原子のX線分 光測定を行っている。この測定は,強い相互作用の性質を解明する上で非常に重要であり,宇宙においても,高密度 原子核や,中性子星の状態方程式に制限をかけることを目指している。TESを宇宙で用いる計画はあるが,まだ一度 も宇宙実証されていないため,過酷な地上実験に応用することで,技術成熟度を高めることも目的である。

我々のグループではこれまで,準備実験として 2014 年 10 月にスイスの Paul Scherrer Institute (PSI) にて,炭素 をターゲットに π 中間子を用いた π –¹² C の X 線分光測定を行い, 6keV の X 線をエネルギー分解能 $\Delta E \sim 5$ eV で 測定することに成功した。

本研究では,地上応用であるハドロン原子 X 線分光測定に向け,茨城県東海村にある大強度陽子加速器施設 (J-PARC)内の K1.8BR ビームライン上に断熱消磁冷凍機を含む冷却環境の構築を行い,TES の基礎性能評価を 行った。基礎性能を評価した TES 素子の ⁵⁵Fe 線源による MnK_{α1},MnK_{α2}のエネルギースペクトルを図 2 に示す。

今回は,基礎性能評価の一環として,はじめてビームの有無の環境下で,クロストークの影響を評価した。ビームのない状況下でのクロストークレート (クロストークイベントと入射 X 線の比) は, $0.13\% \pm 0.10\%$ (誤差はピクセルごとの標準偏差)であり,ビーム下では $2.31\% \pm 0.42\%$ であった。ビームなしの環境下では,クロストークレートが低いことから,荷電粒子由来の同時刻イベントが主であると考えた。

図1 ビーム環境下で得られた X 線スペクトル。全 240 ピクセルの合計のヒストグラム。同測定であるが, spill on がビームがきている時間帯のエネルギースペクトル, spill off がビームがきていない時間帯のエネルギース ペクトルを表している。エネルギー 6000 ~7000 付近 の鋭いピークは今回試料として用いた ⁵⁵Fe 線源による MnK_{α} , MnK_{β} のイベントである。 J-PARC (energy)

5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 592 energy (eV) 図 2 図 1 の MnK 付近を拡大したスペクトル。2 つの

図 2 図 1 の MRK 内近を拡大したスペットル。2 つの 山はそれぞれ $MnK_{\alpha 1} \ge MnK_{\alpha 2}$ のピークである。

X線回折による TES の結晶構造の研究

宇宙物理実験研究室 13163076 山田 陽平 大橋 隆哉 山田 真也 (指導教員)

宇宙の密度比率の大部分はダークエネルギー(73%)やダークマター(23%)で構成されており、バリオン(通常の物質)は全体の4%程度にすぎない。さらに、バリオンの中でも認知されているものはわずかであり、ほとんどがミッシングバリオンやダークバリオンと呼ばれる未知の物質である。これらの大部分はWHIM(中高温銀河間物質)と呼ばれるガスであると考えられており、観測的にはほとんど検出されていないが、ダークマターの分布及び宇宙のフィラメント構造をトレースしていることから、その分布を知ることは極めて重要であるとされている。

我々のグループでは、WHIM の観測を目指す小型 X 線天文衛星 DIOS(Diffuse Intergalactic Oxygen Surveyor) への搭載に向けた超伝導遷移端温度計 (Transition Edge Sensor = TES) 型マイクロカロリメータの開発を行ってい る。この TES 型マイクロカロリメータは入射 X 線光子のエネルギーによる素子の微小な温度上昇を、超伝導遷移端 の急激な抵抗値の変化を利用して測定する検出器である。TES 型マイクロカロリメータは 100 120mK の範囲での極 低温下で動作させることで、WHIM が出す酸素輝線を観測するために要求される数 eV のエネルギー分解能を得るこ とが可能である。

これまでに、基板を製作する際に生じる表面粗さが TES の超伝導転移を阻害している原因の一つであることがわ かっている。また、金属薄膜の結晶性と超伝導転移に深い関わりがあるという先行研究がある。そこで、基板上の TES の正常な転移を確認することを目指す一環として、X 線回折による TES の結晶構造を調べることにした。本研 究では、基板上に Ti,Au を成膜した状態のベタ膜の X 線回折測定を行い、得られる図 1、図 2 のような回折ピークを 定性的に分析した。本発表ではその方法と結果、および考察を行う。

図1 TES と Ti,Au の回折ピーク

図 2 TES と基板の回折ピーク

JAXA 宇宙科学研究所標準平行X線光源室用可視光平行光源の立ち上げと平行度評価

宇宙物理実験研究室

指導教員 大橋 隆哉, 石田 學 13163046 浅井 龍太

宇宙科学研究所の特殊実験棟1階には30mの長さのX線ビームラインが設置されており、首都大やその他研究グループが検出器の性能評価に用いている。しかし、X線を発生させ測定を行うには真空層に入れる必要があるので時間がかかり、そのため測定中に検出器の異常がわかった場合ビームラインからすぐに取り出し対応することもできない。

そこで真空槽に入れる前に X 線観測装置の性能を簡易的に測定できるよう、可視光の平行 光源を設置する。

本実験ではドブソニアン望遠鏡を組み立て横に倒し、接眼部からピンホールを通して光を 出すことで平行光源として利用している。望遠鏡は安価、熱伝導率が0に近い、大口径が得や すいなどの理由から、Sky Watcher ドブソニアン望遠鏡「DOB 18」を採用した(図 1)。

望遠鏡を標準平行 X 線光源室に設置し光軸を調整した後、セオドライト (方位角と仰角の傾きを計測するため角度計測器)を2台用いて焦点距離の調節を行った。具体的には、光源と 主鏡の距離を変えることで望遠鏡から射出される光の elevation が変わるので、焦点距離を変え ながら2台のセオドライトで同じ elevation で測定する距離を平行光を出す位置として求めた。

さらに今回の実験では性能評価として、平行光源の平行度を評価した。具体的には、平 行光の領域ごとの光線方向 (elevation と azimuth) の分布を測定することで平行光源全体の平行 度を得た。平行度を求めるために、セオドライトを動かしそれぞれの測定点で平行度の測定と、 ペンタプリズムに反射させた平行光をセオドライトで測定する2通の方法で測定を行った。 前者の測定では平行光全体の elevation がおよそ±5 秒角以内で得られたが、azimuth は足場の 影響でセオドライトの水準が正確に定まらなかったため適切な結果は得られなかった。 後者 の測定では平行光全体の azimuth が±5 秒角以内、elevation は±15 秒角以内として得られた。 また、得られた結果から azimuth と elevation の差がわかる2次元マップを作成した(図 2)。 本論文ではこれらの具体的な測定方法、および研究結果について述べる。

図 1: 平行光源として設置した望遠鏡

図 2:2次元マップ

宇宙流体速度場解析を目指した ヘルムホルツホッジ分解の基礎研究

14163078 宇宙物理実験 伊藤 慧

流体の挙動は非線形偏微分方程式で表される為、解析的に扱うのは困難であり数値シミュレーションを用いる。この結果から物理的性質を適切に取り出すために多くの解析手法が存在するが、一般的であるのがヘルム ホルツ分解である。

ヘルムホルツ分解は速度場を2つの速度場、発散なし場、回転なし場に分ける。しかしながらこの分解は開領 域を対象としており、境界が存在する閉領域においては境界面上で分解が正常に行われない恐れがある。

そこで、近年ヘルムホルツホッジ分解 (HHD) という新たな手法が提唱されている。ヘルムホルツホッジ分解 (HHD) では、ベクトル場を発散なし場、渦なし場、ハーモニック成分の3種類に分解する。ハーモニック成 分は一様流、または境界面による流れを含むとする。

流れ場の解析法は、X 線天文衛星「ひとみ」におけるペルセウス座銀河団のガス運動の観測結果 [Hitomi collaboration 2016] からもわかるように宇宙流体の研究に関しても考慮されるべき事柄である。

本研究では、ケルビンヘルムホルツ不安定性 (KHI) という流れ場を用いる。KHI は密度が異なる二つの流 れの境界面で生じる不安定性であり、宇宙流体においても銀河の渦状腕における星形成の要因とも考えられて おり重要だとされている。

そこで、本研究では KHI のシミュレーション結果に HHD を実行、及びその考察を行い、HHD の効果を考察 することを目的とする。

まず初めに、HHD を行うために用いる naturalHHD というコードの性能評価を目的として、各成分の内一 つのみを含んだベクトル場を作成し、これらを合わせたベクトル場に対して HHD を行い3 成分に分解した。 結果、分解した3 成分と、最初に作成したベクトル場とそれぞれ一致する事を確認した。その後求めた3 成分 に対してもそれぞれ HHD を行い、含まれる成分を確認した。その結果、適切に分解できた事がわかり、ハー モニック成分は境界部での影響によって生じる為境界で値が大きくなっている事を確認した。

その後 PLUTO という宇宙流体力学における偏微分方程式を計算するソフトウェアを用い、スケールを銀河 規模に設定した KHI 場を作成した。結果、高レイノルズ場 (1000) と低レイノルズ場 (100) の二種類の KHI を適切に作成することができた。

作成した KHI 場に対して HHD を行なった所、KHI 場に対しても適切に分解が行われた。流れ場の特徴的な 物理量として各速度場の最大値をプロットし、そして流れ場の形状を比較すると、レイノルズ数が 1000 の場 合においてはレイノルズ数が 100 の場合に比べて不安定性が大きい事がわかり、乱流が生じているのではない かと考えた。

ヘルムホルツ分解では値が大きいハーモニック成分が他の成分に含まれてしまう為、このような結論に至る事ができない。閉領域かつ一様流が成分として存在する場合、HHD は有用であると結論づけられる。

単層遷移金属カルコゲナイドの電界効果局所光物性の研究

表界面光物性研究室

青木 孝晶 13163019

指導教員:蓬田 陽平、柳 和宏

遷移金属ダイカルコゲナイド(TMDC)は、遷移金属元素一つに対して 16 族元素であるカ ルコゲンが二つ結合した二次元層状化合物である。単層化によりバルクでは見られない新 しい物性が見出され、近年、極めて活発に研究がなされている。二硫化モリブデン(MoS2) や二硫化タングステン(WS2)は、多層の場合は間接遷移型であるが、単層の場合は直接遷移 型のバンド構造を持ち、明確な発光を検出することができる。この発光は、構造欠陥の存 在などにより、束縛励起子型発光やトリオン発光など、大きくその性質が変わることが知 られているが、局所構造と発光特性との関係は未だ正確には理解できておらず、その解明 は TMDC の光物性の理解において重要な課題となっている。これまで我々は、近接場分光 法を駆使して MoS₂の局所発光強度と局所吸収スペクトル等の局所光物性を研究してきた。 そこで本研究では、同研究を発展させ、イオン液体を用いた電気二重層キャリア注入法と 顕微分光測定を組み合わせて、試料の構造不均一性を局所光物性から明らかにし、局所電 子構造、さらにキャリア注入によりそのフェルミレベルとの関係を解明することを目的に 研究を行った。本研究では初めに MoS2単層試料にキャリアドープしながら発光強度を測定 するデバイスを作製し、顕微分光測定を行った。その結果、電子ドープをすると発光が減 少することが確認できたが、ホールドープでは試料が壊れてしまい発光の減少を観測する ことができなかった。WS2でも同様の実験を行った際には、図 1,2 のように電子ドープで 発光の減少が観測できたが、図 3 のように、やはりホールドープでは試料が壊れてしまい 観測することができなかった。現在、更なる測定用デバイスの改良を行っており、その背 景の検証を行っている。

(a) WS₂発光マッピング(電圧印加なし) (b)WS₂電子ドープ発光マッピング(0.75V 印加)
 (c)WS₂ホールドープ発光マッピング(-0.5V 印加)

リチウムイオン電解質を用いたキャリア注入法の研究

表界面光物性研究室

岡田 遼太朗 13163060

指導教員: 蓬田 陽平、柳 和宏

研究背景:我々は層状の遷移金属ダイカルコゲナイド(TMDCs)であるWS2をチューブ状にした多層WS2ナノチューブ(WS2NT)について、多数のWS2NTがネットワーク構造を形成したWS2NT薄膜デバイスに対しイオン液体を用いた電気二重層法キャリア注入を行い、その両極性輸送特性および熱電特性を明らかにした^{[1][2]}。一方、このような層状化合物では、イオン半径の小さいリチウム(Li)イオンを層間にインターカレーションさせることによりキャリア密度を制御できることが知られており、イオン半径の大きいイオン液体分子よりも高密度キャリア注入ができる可能性がある。そこで我々はWS2NTネットワーク系および層状化合物系におけるさらなる高キャリア密度下での物性を解明すべく、リチウム(Li)イオン電解質を用いたキャリア注入法の研究を行った。

実験内容:電解質には粉末状の過塩素酸リチウム(LiClO₄)をポリエチレングリコール(PEG) に溶かしたものを用いた。PEG は分子量により室温で液体・固体のものが存在し、それぞれに十 分な量の LiClO₄を溶かした。次に有機溶媒に分散させた WS₂NT をメンブレンフィルターで減圧 濾過し WS₂NT ネットワーク系薄膜を作製した。金電極を蒸着させた SiO₂ 基板にその薄膜を転写 し作製した WS₂NT 薄膜デバイスに液体・固体の Li イオン電解質を用いてキャリア注入を行った。

実験結果:イオン液体を用いた場合と、液体・固体それぞれのLiイオン電解質を用いた場合の 印加ゲート電圧に対するソースドレイン電流の依存性(対数)を下図に示す。イオン液体を用い た場合ではWS2NTネットワーク系への電子・ホール注入が行えており、トランジスタの性能を示 す指標として ON/OFF 比を見積もると 10³程度であることが確認できる(図 a)。Liイオン電解質 を用いた場合では正のゲート電圧を印加した際、Liイオンにより電子がドープされている(図 b, c)。そして、液体Liイオン電解質では ON/OFF 比が 10³程度でイオン液体と同程度(図 b)、固体 Liイオン電解質では 10²程度とイオン液体よりも小さいことが分かった(図 c)。これは固体電解 質においては WS2NT ネットワーク系全体へ電解質が染み渡ることが難しくLiイオンによるキャ リア注入が有効的に行えなかったためと考えられる。

まとめ:Liイオン電解質を用いたWS2NTネットワーク系の薄膜トランジスタを作製し、Liイオンによる電気二重層法キャリア注入に成功した。固体Liイオン電解質を用いた場合ではイオン 液体に匹敵するほどのキャリア注入を実現するには至らなかったが、一方液体のLiイオン電解質 を用いたキャリア注入法ではイオン液体と同程度のON/OFF比を得ることができた。WS2NTネッ トワーク系さらには他の層状化合物系へのLiイオンインターカレーションを用いた物性制御を目 指して、電解質の作製条件の探索を今後も行っていく。

参考文献: [1]Sugahara et al., APEX 9, 075001 (2016), [2]Kawai et al., APEX 10, 015001 (2017)

高純度精製ナノチューブにおける熱輻射発電

表界面光物性研究室

ーノ瀬遥太 13163069指導教員:蓬田陽平、柳和宏

研究背景:光吸収によって生じる局所温度上昇を物質の持つ熱電変換能で電力へと変換するエネルギー 変換機構を光熱電変換機構という。それは、半導体材料で見られる電荷分離型光エネルギー変換機構で は困難な、バンドギャップ以下のテラヘルツ・遠赤外光の光エネルギーを変換可能という特徴を持つ。 単層カーボンナノチューブ(SWCNTs)は比較的大きなゼーベック係数を備えており、また、我々の研究室 ではこれまで、フェルミレベルをシフトさせた SWCNTs にレーザー光を当て光熱電変換が可能であるこ とを明らかにしてきた。SWCNTs は、軸に平行の表面プラズモン吸収帯の存在により、遠赤外光を効率 よく吸収するという特徴がある。そこで本研究では熱源(黒体炉)から発せられる遠赤外光により SWCNTs において光熱電変換が可能かどうか研究した。

実験内容:SWCNTsは合成の過程で様々な種類のカイラリティが混在するため、熱電素子などのデバイスに用いる場合には分離精製を行うことが性能を上げるために必要不可欠である。本研究では、密度勾

配遠心分離法を用いて精製した直径 1.4nm の半導体型 SWCNTs とゲルクロマトグラフィー分離法を用いて精製した 直径 0.75nm の半導体型(6,5) SWCNT を用いた。(6,5)について は更なる高純度化を目指し、従来の単一カイラリティ分離法で は困難であった金属型 SWCNTs の除去を、CO2バブリングと いう工夫を用いて pH を精密に制御することで分離に成功し、 99%以上の純度を実現した。

得られた試料薄膜の片側に黒体炉熱源から放射した熱輻射 光を照射し、温度差とその時に生じた光熱起電力を測定した。 従来の分離法で得た半導体 SWCNTs は温度差に応じた起電力 を顕著に観測し、最大で温度差約 4K、起電力約 600μV までに のぼり、さらには体温程度の 30℃の熱源に対しても明瞭な起電 力を得ることができた。一方、高純度(6,5)は金属型の完全な分 離によって抵抗値が大幅(>104)に増大し、キャリアをドープし ていない状態では絶縁体に似た振る舞いをした。その結果、原 理的に電圧計では起電力を測定することが困難であった。

まとめと今後の展望:(6,5)SWCNTs はそのバンドギャップの 広さから、大きなゼーベック係数を持つことが理論的に示され ている。電気二重層キャリア注入を用いてフェルミレベルを最 適な領域にシフトさせて実験を行うことにより、高純度単一カ イラリティ試料で更なる大きな熱輻射光からの発電が期待で きる。

図2 熱輻射光からの起電力

ダイクォークのサイズを考慮した

クォーク・ダイクォークモデルにおける重いバリオン

原子核ハドロン物理研究室

隈川 健斗 13163049

慈道 大介 (指導教員)

ハドロンはπ中間子のようにクォークと反クォークで構成されているメソンと、陽子のように3つのクォークで構成されているバリオンの2つに分けられる。ハドロン内のクォーク はカラーを持ち、無色となるように閉じ込められている。バリオンにおいて、2つのクォー クが結合し、1つの粒子として3つ目のクォークと結合するような粒子をダイクォークと呼 び、そのようなモデルをクォーク・ダイクォークモデルと呼ぶ。この描像がよく見える例と してΛ。粒子が挙げられる。

サイズを考えたダイクォークを回転剛体子として扱い、クォークと回転剛体子の2体系として考えてシュレディンガー方程式を解く。ダイクォークとクォーク間の相互作用は、*c* マメソンの質量スペクトルを説明するポテンシャル

$$V_{q\bar{q}} = -\frac{4}{3}\frac{\alpha \hbar c}{r} + k_0 r$$

において、 Λ_c 粒子はクォーク同士であるので、 $V_{qq} = \frac{1}{2} V_{q\bar{q}}$ として求める。

重いバリオン Λ_c 粒子のダイクォークのサイズを決めるのに p 軌道の励起エネルギーを基 準とすると、サイズが ρ =1.1fm 程度となるとき実験値とあった。次に ρ =1.1fm をダイクォ ークのサイズと仮定して Λ_c 粒子について議論すると、観測されている Λ_c (2880) 5/2⁺は d 軌 道の基底状態として励起エネルギーを説明できる。実験では粒子の種類で状態とスピン・パ リティが特定されていない Λ_c or Σ_c (2765) ??はどの軌道でも説明することはできなかった。

したがって、これらの結果から Λ_c or $\Sigma_c(2765)$?"が $\Lambda_c(2765)$?"として成立するのならば、 Λ_c 粒子においてダイクォーク描像が成立しないことがわかった。

図 1:クォーク・ダイクォークモデル

図 2:ダイクォークサイズの決定

Nambu-Jona-Lasinio 模型における クォーク質量の生成

原子核ハドロン物理研究室

13163055 河野 晋之介 (指導教員) 慈道 大介

原子核の構成要素である陽子や中性子は核子と呼ばれ、それらは3つのクォ ークから形成されている。しかし、核子の質量が約1000MeVである一方、核子 の構成要素となるuクォークやdクォークは約10MeV程度であり、実際の質 量のわずか数パーセントにしかならない。すなわち、核子をはじめとしたハド ロンの質量を得ているということは、それらを構成しているクォークがそれに 足るだけの質量を獲得しているということに他ならない。その質量獲得の要因 となるのが、カイラル対称性の自発的破れである。

カイラル対称性を有する模型には、クォークの場を用いてラグランジアンを 記述する Nambu-Jona-Lasinio モデル (通称 NJL モデル)がある。このモデル はクォークの閉じ込め機構を持たないが、カイラル対称性の自発的破れや4点 相互作用が考慮されているモデルである。

今回の卒業研究においては、NJL モデルを用いて、カイラル対称性が自発的 に破れることによりクォークが質量を獲得することと、それに伴いπ中間子が 南部・ゴールドストンボゾンとして振る舞うことを確認する。(下部左:クォー ク質量/下部右:π中間子/グラフの横軸はいずれもクォーク間相互作用の強さ)

市場におけるオピニオンダイナミクス

非線形物理研究室

肱岡 厚志 12163088田中 篤司 (指導教員)

1970 年代以来、社会物理学はソーシャルネットワーク、疫病の伝染、選挙など様々な問題に取り組んできた。オピニオンダイナミクスは社会物理学において主要なテーマの1つで、人々の意思決定を理解することを目的としている。本研究では、S. Galamによって考案されたモデルを拡張し、株式市場における人々の意思決定メカニズムの理解を試みた。

まず Galam のモデル[1]を説明する。Galam モデルでは、N 人のエージェント集団が政治 の議論に参加していると見立てた。2つの S:Support、0:Oppose の意見があるとする。あ る時点でのSの意見を持つ人の割合をP(t)とする。この集団をランダムに3人組みの小集 団に切り分け、小集団内で意見交換を行う。意見交換においてマイノリティの意見はマジ ョリティの意見に変わる。これを1ステップとし、繰り返しこのステップを行う。

次に本研究の設定を紹介する。本研究では、政治における Galam のオピニオンダイナミ クスのモデルを株式市場における売り・買いの意見形成と読み替える。株式市場での売り・ 買いの意見形成は、2つの過程、①対話(=参加者の直接的な意見交換)と②価格(~集団 全体の意見)を通した意見交換によって決定されると仮定した。①では Galam と同じモデ ルを採用し、Sを買い、0を売りと見立てた。①のステップの後、②では各人が価格 (~集 団全体の意見 P(t))を見て意見を変える。集団全体においてS(買い)の支持者が多くP(t) が大きい場合は、需要が多いため価格が高い場合と考えられる。この場合、エージェント は0(売り)に意見を変える。一方、P(t)が小さい場合は、価格が低い場合なので、エージ ェントはこのステップにおいてS(買い)に意見を変える。このように「安く買って高く売 る」という市場において一般的とされる性質を取り入れた。各①、②の作用の強さを ε 、 µとした。 図1.充分時間が経った後でのP(t)の値

数値実験の結果としては ε 、 μ の値により3 $\varepsilon^{=1}$ つの相が確認された。 μ が低い値では、P(t) が 0 または1に偏る層があり(図1の白い領 域)、別の相として μ を増大させた場合に、売 り買いの情勢は平衡状態になり、P(t)が 0.5 に $\varepsilon^{=0.5}$ 落ち着く。一方、 ε 、 μ が大きい場合において P(t)の振動現象が発見された(図1の濃色の領 域)。

今後の展望としては、本研究によりセンチメ * ント(売り・買いの情勢)に対する投資家の意

見交換の活発度や市場への信頼度の影響予測に資することを期待する。

[1] S.Galam, Sociophysics: "A review of Galam models", International Journal of Modern Physics C, Volume 19, Issue 03, pp. 409-440 (2008)

太陽系は安定か

学修番号 15263001 阪部政武

非線形物理研究室

指導教員 田中篤司

はじめに

太陽系の安定性は次の二つの理由で保たれている。その一、太陽を中心として惑星な どの小天体を結びつけている万有引力は距離の逆二乗の力です。このタイプの力のもと での楕円運動は安定である。その二、太陽の質量は太陽系の 99.866%を占めていて圧 倒的に大きい。私は今までこのように理解していたが、ラスカルの講演録を読むと、サ スマン、ウィズダムとラスカルらは太陽系がカオス的だということです。

①300年の歴史

太陽系の安定性の問題はニュートンの重力の法則の表明までさかのぼる。ニュートン は「光学」の本の最後に、彗星の摂動によって太陽系の安定性が損なわれるかもしれな いと表明。以来、300年間、多くの天文学者、数学者達が太陽系の安定性を論証してき た。ラグランジュ、ラプラスは惑星間の影響を摂動で調べて太陽系は安定していると「証 明」した。しかし、ポアンカレは重力で相互作用する三体問題の運動方程式を積分する ことは不可能であることを示した。さらに天文学者達が計算している摂動級数が無限時 間においては発散するので、これまでの証明は不完全であることを示した。

②数値計算

最近二十数年間のコンピュータを使っての数値計算により、太陽系の惑星の軌道運動 はカオス的であることが分かった。惑星の軌道運動がカオス的ということは初期条件に ずれがあると、そのずれが経過時間とともに指数関数的に大きくなり、惑星の軌道の予 測は出来なくなることを意味する。

カオスかどうかは数値計算で、リャプノフ時間を求めて調べる。ラスカルは地球型惑 星(水星、金星、地球、火星)のリャプノフ時間は500万年と求めた。さらに、様々な 初期条件について調べたところ、34億年後に地球型惑星に不安定化が起こり、惑星間 の衝突の可能性も出てくることが示された。

文献

Laskar, Prog. Math. Phys. 66, 239 (2013)

矩形スパイラル状ビリヤードにおける異常な拡散

非線形物理研究室

溝口悠樹 13163083

首藤 啓 (指導教員)

系が通常の拡散過程に従う場合,(たとえば1次元の場合)拡散の様子は以下の拡散方程式によっ て記述される。

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = D \frac{\partial^2 u}{\partial x^2}$$

ここで D は拡散係数と呼ばれる量で、拡散の速さを示す指標であり、D \coloneqq $\lim_{t \to \infty} \frac{\langle x^2 \rangle}{2t}$ によって定ま

る。一方,自然現象に現れるすべての拡散過程が上記の拡散方程式で記述されるわけではない。本 研究では,矩形スパイラル状ビリヤード系における拡散過程を数値的に調べ,粒子の拡散の様子が 通常の拡散過程に従わない,いわゆる異常拡散を示すことを見出したのでその結果を報告する。

矩形スパイラルビリヤード系とは、図1に示すように、スパイラル状の領域内で弾性衝突を繰り 返しながら運動する質点の動力学であり、領域の複雑さにも関わらずカオスが発生しないことが知 られている。ここで、スパイラルの中心を初期位置として、初期位置からのユークリッド的な距離 を観測量とした場合、並びに、壁面に沿った距離と角度の2つの変数を座標(バーコフ座標と呼ば れるもの)とした場合の2通りについて拡散の様子を調べたところ、前者については subdiffusion

(通常の拡散より遅い拡散),後者については superdiffusion(通常の拡散より速い拡散)が数値的 に観察された。とくに,後者の superdiffusion については,その背景に,ビリヤード内を特殊な角 度を保ったまま弾道的(ballistic)に運動する軌道が存在することが明らかになった。

R. Klages, "From Deterministic Chaos to Anomalous Diffusion", Dr. habil. (2009)

ReドープMoS₂原子層の合成と電気伝導特性の評価

ナノ物性研究室 13163090 吉村 真太郎 指導教員: 宮田 耕充、 真庭 豊

遷移金属ダイカルコゲナイド(TMDC)原子層は、原子3個分の厚さを持つ二次元半 導体であり、特異なスピン・バレー物性やエレクトロニクス応用より注目を集めている。 TMDCの物性や応用研究を進めるために、含まれる不純物の役割を理解し制御していく ことが重要な課題となっている。特に、理論的には二硫化モリブデン(MoS₂)においては、 NbやReをMoと置換することで、それぞれホールや電子がドープされると予測されてい る[1]。現在まで、Nbを不純物として置換したTMDC原子層の合成に関する研究が報告 されているが、その研究例は非常に少ない[2,3]。本研究では、代表的な半導体TMDCで ある二硫化モリブデン(MoS₂)にReをドープした系に着目し、その電気伝導特性の理解を 目的とした。

試料は、化学気相成長(CVD)法を用いて、サファイア基板上に結晶を成長させた。 光学顕微鏡観察より、MoS₂とRe-dope MoS₂共に、10µm程度のサイズの結晶が基板上に 確認された(Fig.1a, b)。Reドープ試料のラマンスペクトルでは、対称性の乱れに由来す るLAモードの増強が観測され、Reの置換を示唆している(Fig.1c)。電気抵抗の温度依存 性では、Reをドープによる活性化エネルギーの変化が観測されなかった。これはRe由 来の不純物準位が深く、他の浅いギャップ内準位がMoS₂の電気伝導特性を支配してい るためと解釈できる。今後は、電界効果等を利用し、電気伝導特性の詳細な評価を進め ていく予定である。

Fig.1 (a)MoS₂と(b)ReドープMoS₂の結晶の光学顕微鏡像。MoS₂とReドープMoS₂の(c) ラマンスペクトルと(d) 電気抵抗の温度依存性。
[1] K. Dolui, *et al.*, *Phys. Rev. B*, 88, 075420 (2013).

- [2] J. Suh, et al., Nano. Lett., 14, 6976-6982 (2014).
- [3] S. Sasaki et al., Appl. Phys. Express, 9, 071201 (2016).

単層 WSe2の合成と電気伝導特性の評価

ナノ物性研究室 13163098 高口 裕平指導教員: 宮田 耕充、 真庭 豊

遷移金属ダイカルコゲナイド(TMDC)は、多様な光・電気特性を持つ二次元層状物質 として基礎物理とデバイス応用の観点から注目を集めている。代表的な TMDC である MoS₂やWSe₂は半導体であり、これらをチャネルに用いた電界効果トランジスタ(FET) が報告されてきた。特に、WSe₂は単層において両極性動作を示し、その合成法の開発 やキャリア制御による各種電子素子への展開が期待されている。本研究では、化学気相 成長(CVD)を用いた単層 WSe₂の合成方法の確立と、その FET 特性および紫外線照射に よるホールドープの結果について報告する。

単層 WSe₂は酸化タングステンとセレンを原料とし、ハライドアシスト CVD 法によ り SiO₂/Si 基板上に作製した[1]。光学顕微鏡観察(Fig.1a)、発光・ラマンスペクトルより、 50 mm 程度の単層 WSe₂の成長を確認した。FET 作製のために、シャドーマスクを用い て Cr(1 nm)/Pd(10 nm)/Au(40 nm)を試料に電極として蒸着した (Fig.1b)。作製した FET にバックゲート電圧(V_g)をかけ、ソースドレイン電流(I_d)の測定を行ったところ、ゲート 電圧が負側に行くにつれ I_dが上昇する p 型特性が確認された。ホールドープのために試 料に大気中で紫外線照射を行ったところ、照射時間の増加に伴ってしきい値電圧が正側 にシフトする傾向が見られた。興味深いことに、多層 WSe₂への紫外線照射と比較し[2]、 本研究の単層 WSe₂ ではしきい値電圧がより大きくシフトすることがわかった。この結 果は、単層 WSe₂の方が総体積に対する表面積の比が大きく、オゾン吸着による電荷移 動が効果的に起こったためと考えられる。

Fig.1 (a) SiO₂/Si 上に成長した単層 WSe₂結晶の光学顕微鏡像。(b) 作製した単層 WSe₂ FET のモデル図。(c) 紫外線を 0, 3, 6, 9 分間照射した後のソースドレイン電流のゲート 電圧依存性。

[1] S. Li, et al., Appl. Mater. Today, 1 60-66 (2015).

[2] S. Wang, et al., Phys. Chem. Chem. Phys. 18, 4304-4309 (2016)

熱電変換を用いた発電テープの作製

ナノ物性研究室

本郷 直也 13163088

真庭 豊 中井 祐介(指導教員)

熱電発電とは、物質に温度差をつけると、温度差に比例した電圧が生じるゼーベック効 果を利用し電力を得ることである。熱電発電の利点としては、可動部がなくメンテナンス 等が不要で長寿命、熱から電気へと直接変換しているので環境への負担が小さいなどが挙 げられる。

近年 IoT (Internet of Things)の活用が進み、IoT を支えるセンサー等の機器を稼働させ るにはエナジーハーベスティングが必要になる。エナジーハーベスティング (energy harvesting)とは、太陽光や照明光、機械の発する振動、熱などのエネルギーを採取し、電 力を得る技術のことである。特に身の回りにある僅かなエネルギーを電力に変換し活用す ることを目的とした技術である。そこで、本研究では"熱"に注目し、工場・自動車など の排熱や体温などの身近な熱の有効利用を目指しテープ状の熱電変換デバイスを作製する ことを目的とする。

デバイスをテープ状にすることにより様々な形状のものに容易に取り付けることが可能 になる。しかし、デバイスをテープ状にする、つまりデバイスを薄くしてしまうと、デバ イス内での温度差の確保が困難になってしまう。従来の熱電変換デバイスはp型・n型の熱 電材料を直列に接続し、熱流に対して熱電変換材料が平行に配置(図1)されているものが 多い。そこで、熱電変換材料を熱流に対して垂直に配置(図2)することにより、薄いデバ イス内においても線材を長くでき、その熱抵抗を大きくでき、温度差が確保しやすくなる と考えられる。これらをふまえ、熱流に対し線材が垂直に配置するテープ状の熱電変換デ バイスを作製した。本研究では、熱電変換材料用として銅、コンスタンタンを用いたが、 将来的にはカーボンナノチューブ糸によるデバイスを作製予定である。

当日はデバイスの作製方法と起電力の測定結果について発表を行う。

圧力下 ESR 測定手法の改良

ナノ物性研究室

13163087 嶋崎 真佳

指導教員 真庭 豊 坂本 浩一

超低温、超高圧という極限の環境下では通常では見られない物性が多く確認 される。しかしそのような環境下で測定を行うことは困難であり、まだ測定さ れていない物性が多く存在する。物質の磁気的な性質を調べる手段として ESR 測定がある。本研究では、高圧下で温度を変化させながら ESR 測定を行う手法 の確立を目的としている。

温度変化させながら安定して大きな圧力を加える手段として、本研究ではキ ュービックアンビル加圧装置を用いる。この装置は6方向から試料へ等方的に 力を加え、約10GPaまで加圧することができる。先行研究では加圧して測定 を行った際にデータに大きな歪みやノイズが生じるという問題があった。そこ で今年度の研究では、今までは単純な立方体であったガスケットを"フィン"付 きの立方体に変えるなど改良を行った。¹⁾フィンには加圧初期の変形を和ら げる、アンビルを正しい位置に保持するなどの効果が期待できる。このガスケ ットで測定を行ったところ油圧装置の表示で70tの力が加わった状態まで、歪 みのない信号を得ることができた。しかし、アンビルが破損していたため、表 示通りの圧力が加えられていなかった可能性がある。今後の課題としては破損 を防ぐためアンビルの素材の再検討、圧力の校正などが挙げられる。

(b)従来の立方体ガスケット(b)フィン付きのガスケット(c)今回測定した信号 1) J.-G. Cheng, K. Matsubayashi, S. Nagasaki, A. Hisada, T. Hirayama, M. Hideo, H.

Kagi, and Y. Uwatoko: Rev. Sci. Instrum. 85 (2014) 093907.